Hot Working Processes

By hot working are meant such processes as rolling, forging, hot extrusion, and hot pressing, in which the metal is heated above its recrystallation temperature.
Hot rolling is usually used to create a bar of material of a particular shape and dimension. Figure 2–11 shows some of the various shapes that are commonly produced by the hot-rolling process. All of them are available in many different sizes as well as in different materials. The materials most available in the hot-rolled bar sizes are steel, aluminum, magnesium, and copper alloys.
Tubing can be manufactured by hot-rolling strip or plate. The edges of the strip are rolled together, creating seams that are either butt-welded or lap-welded. Seamless tubing is manufactured by roll-piercing a solid heated rod with a piercing mandrel.
Extrusion is the process by which great pressure is applied to a heated metal billet or blank, causing it to flow through a restricted orifice. This process is more common with materials of low melting point, such as aluminum, copper, magnesium, lead, tin, and zinc. Stainless steel extrusions are available on a more limited basis.
Forging is the hot working of metal by hammers, presses, or forging machines. In common with other hot-working processes, forging produces a refined grain structure that results in increased strength and ductility. Compared with castings, forgings have greater strength for the same weight. In addition, drop forgings can be made smoother and more accurate than sand castings, so that less machining is necessary. However, the initial cost of the forging dies is usually greater than the cost of patterns for castings, although the greater unit strength rather than the cost is usually the deciding factor between these two processes.

  • READ MORE.......

  • Mechanical Engineering
    McGraw−Hill Primis
    ISBN: 0−390−76487−6
    Shigley’s Mechanical Engineering Design,
    Eighth Edition

    for STEP BY STEP GUIDE unigraphics simple tutorial please visit.........



  • Share on :


    Post a Comment