Mechanical Engineering Design

Mechanical engineers are associated with the production and processing of energy and
with providing the means of production, the tools of transportation, and the techniques of automation. The skill and knowledge base are extensive. Among the disciplinary bases are mechanics of solids and fluids, mass and momentum transport, manufacturing processes, and electrical and information theory. Mechanical engineering design involves all the disciplines of mechanical engineering.
Real problems resist compartmentalization. A simple journal bearing involves fluid
flow, heat transfer, friction, energy transport, material selection, hermomechanical
treatments, statistical descriptions, and so on. A building is environmentally controlled.
The heating, ventilation, and air-conditioning considerations are sufficiently specialized that some speak of heating, ventilating, and air-conditioning design as if it is separate and distinct from mechanical engineering design. Similarly, internal-combustion engine design, turbomachinery design, and jet-engine design are sometimes considered discrete entities. Here, the leading string of words preceding the word design is merely a product descriptor. Similarly, there are phrases such as machine design, machine-element design, machine-component design, systems design, and fluid-power design. All of these phrases are somewhat more focused examples of mechanical engineering design. They all draw on the same bodies of knowledge, are similarly organized, and require similar skills.




Mechanical Engineering
McGraw−Hill Primis
ISBN: 0−390−76487−6
Text:
Shigley’s Mechanical Engineering Design,
Eighth Edition
Budynas−Nisbett
Shigley’s Mechanical Engineering Design,
Eighth Edition
Budynas−Nisbett
McGraw -Hill



  • Read more........
  • Cast Iron

    The cast iron is obtained by re-melting pig iron with coke and limestone in a furnace known as cupola.
    It is primarily an alloy of iron and carbon. The carbon contents in cast iron varies from 1.7 per cent to 4.5 per cent. It also contains small amounts of silicon,
    manganese, phosphorous and sulphur. The carbon in a cast iron is present in either of the following two forms:
    1. Free carbon or graphite, and 2. Combined carbon or cementite.
    Since the cast iron is a brittle material, therefore, it cannot be used in those parts of machines which are subjected to shocks. The properties of cast iron which
    make it a valuable material for engineering purposes are its low cost, good casting characteristics, high compressive strength, wear resistance and excellent machinability. The compressive strength of cast iron is much greater than the tensile strength. Following are the values of ultimate strength of cast iron :
    Tensile strength = 100 to 200 MPa*
    Compressive strength = 400 to 1000 MPa
    Shear strength = 120 MPa

    (1MPa = 1MN/m2 = 1 × 106 N/m2 = 1 N/mm2)


    A TEXTBOOK OF Machine Design (S.I. UNITS)
    [A Textbook for the Students of B.E. / B.Tech., U.P.S.C. (Engg. Services); Section ‘B’ of A.M.I.E. (I)]

    R.S. KHURMI
    J.K. GUPTA

    2005
    EURASIA PUBLISHING HOUSE (PVT.) LTD.
    RAM NAGAR, NEW DELHI-110 055


  • Read more........
  • Mechanical Properties of Metals

    The mechanical properties of the metals are those which are associated with the ability of the material to resist mechanical forces and load. These  mechanical properties of the metal include strength, stiffness, elasticity, plasticity, ductility, brittleness, malleability, toughness, resilience, creep and
    hardness. We shall now discuss these properties as follows:
    1. Strength. It is the ability of a material to resist the externally applied forces without breaking or yielding. The internal resistance offered by a part to an externally applied force is called *stress.
    2. Stiffness. It is the ability of a material to resist deformation under stress. The modulus of elasticity is the measure of stiffness.
    3. Elasticity. It is the property of a material to regain its original shape after deformation when the external forces are removed. This property is desirable for materials used in tools and machines. It may be noted that steel is more elastic than rubber.
    4. Plasticity. It is property of a material which retains the deformation produced under load permanently. This property of the material is necessary for forgings, in stamping images on coins and in ornamental work.
    5. Ductility. It is the property of a material enabling it to be drawn into wire with the application of a tensile force. A ductile material must be both strong and plastic. The ductility is usually measured by the terms, percentage elongation and percentage reduction in area. The ductile material commonly used in engineering practice (in order of diminishing ductility) are mild steel, copper, aluminium, nickel, zinc, tin and lead.
    Note : The ductility of a material is commonly measured by means of percentage elongation and percentage
    reduction in area in a tensile test. (Refer Chapter 4, Art. 4.11).
    6. Brittleness. It is the property of a material opposite to ductility. It is the property of breaking of a material with little permanent distortion. Brittle materials when subjected to tensile loads, snap off without giving any sensible elongation. Cast iron is a brittle material.
    7. Malleability. It is a special case of ductility which permits materials to be rolled or hammered into thin sheets. A malleable material should be plastic but it is not essential to be so strong. The malleable materials commonly used in engineering practice (in order of diminishing malleability) are lead, soft steel, wrought iron, copper and aluminium.
    8. Toughness. It is the property of a material to resist fracture due to high impact loads like hammer blows. The toughness of the material decreases when it is heated. It is measured by the amount of energy that a unit volume of the material has absorbed after being stressed upto the point of fracture. This property is desirable
    in parts subjected to shock and impact loads.
    9. Machinability. It is the property of a material which refers to a relative case with which a material can be cut. The machinability of a material can be measured in a number of ways such as comparing the tool life for cutting different materials or thrust required to remove the material at some given rate or the energy required to remove a unit volume of the material. It may be noted that brass can be easily machined than steel.
    10. Resilience. It is the property of a material to absorb energy and to resist shock and impact loads. It is measured by the amount of energy absorbed per unit volume within elastic limit. This property is essential for
    spring materials.
    11. Creep. When a part is subjected to a constant stress at high temperature for a long period of time, it will undergo a slow and permanent deformation called creep. This property is considered in designing internal
    combustion engines, boilers and turbines.
    12. Fatigue. When a material is subjected to repeated stresses, it fails at stresses below the yield point stresses. Such type of failure of a material is known as *fatigue. The failure is caused by means of a
    progressive crack formation which are usually fine and of microscopic size. This property is considered in designing shafts, connecting rods, springs, gears, etc.
    13. Hardness. It is a very important property of the metals and has a wide variety of meanings. It embraces many different properties such as resistance to wear, scratching, deformation and machinability etc. It also means the ability of a metal to cut another metal. The hardness is usually expressed in numbers which are dependent on the method of making the test. The hardness of a metal may be determined by the following tests :
    (a) Brinell hardness test,
    (b) Rockwell hardness test,
    (c) Vickers hardness (also called Diamond Pyramid) test, and
    (d) Shore scleroscope.



    A TEXTBOOK OF Machine Design (S.I. UNITS)
    [A Textbook for the Students of B.E. / B.Tech., U.P.S.C. (Engg. Services); Section ‘B’ of A.M.I.E. (I)]
    2005
    EURASIA PUBLISHING HOUSE (PVT.) LTD.
    RAM NAGAR, NEW DELHI-110 055

  • Read more........
  • Design Problems

    Design problems normally originate as some form of problem
    statement provided to the designer by someone else, the client or the company management. These problem statements, normally called a design brief, can vary widely in their form and content.
    At one extreme, they might be something like the statement made by President Kennedy in 1961, setting a goal for the USA, 'before the end of the decade, to land a man on the moon and bring him back safely'. In this case, the goal was fixed, but the means of achieving it were very uncertain. The only constraint in the brief was one of time - before the end of the decade. The designers were given a completely novel problem, a fixed goal, only one constraint, and huge resources of money, materials and people. This is quite an unusual situation for designers to find themselves in!
    At the other extreme is the example of the brief provided to
    the industrial designer Eric Taylor, for an improved pair of
    photographic darkroom forceps. According to Taylor, the brief originated in a casual conversation with the managing director of the photographic equipment company for which he worked, who said to him, 'I was using these forceps last night, Eric. They kept slipping into the tray. I think we could do better than that.' In this case, the brief implied a design modification to an existing product, the goal was rather vague, 'that [they] don't slip into the tray', and the resources available to the designer would have been very limited for such a low-cost product. Taylor's re-design provided ridges on the handles of the forceps, to prevent them slipping
    against the side of the developing-tray.
    Somewhere between these extremes would fall the more normal kind of design brief. A typical example might be the following brief provided to the design department by the planning department of a company manufacturing plumbing fittings. It is for a domestic hot and cold water mixing tap that can be operated
    with one hand. (Pahl and Beitz, 1984).




    Engineering Design Methods
    Strategies for Product Design
    THIRD EDITION
    Nigel Cross
    The Open University, Mi/ton Keynes, UK
    JOHN WILEY & SONS, LTD
    Chichester- New York. Weinheim • Brisbane. Singapore. Toronto






  • Read more........
  • Labels

    2d (1) 3D (1) ABG (1) agen JNE (1) almari (1) Alufoil (1) Aluminum Foil (1) anilox roll (1) apartemen (1) Atom (1) autocad (1) backdrop logo (1) bagian dalam (1) bangunan (1) batu alam (1) berkualitas (1) bermutu (1) berpengalaman (1) bertingkat (1) birdview (1) black and white (1) botol plastik (1) cafe (1) classic (1) coklat (1) cold rolled sheet (1) Computer To Plate (1) Consumer Understanding (1) control movement (1) counter (1) CTP (1) denah berwarna (1) denah kantor (1) desain (1) desain cuci mobil (1) desain kamar (1) desain produk (1) design (1) Design and Function (1) design meja (1) Design restaurant (1) design rumah (1) di daerah (1) dinding bata (1) dining (1) Duromer (1) Electrons (1) etnik (1) factors (1) flexo packaging (1) flexo printing (1) food (1) furniture (1) gallus (1) gambar (1) gaya modern (1) gloss (1) grc kotak (1) Halftone (1) hanya 550 ribu (1) harga murah (1) hasil cepat (1) hotel (1) industrial (1) injection (1) Injection Mold (1) ink (1) inovatif (1) install (1) interior (1) interior rumah (1) jasa gambar rumah (1) jasa 3d (1) jasa arsitek (1) jasa desain (1) jasa desain 3d (1) jasa design (1) jasa designer (1) jasa gambar (1) kamar tidur (1) kamar tidur anak (1) kampus (1) karaoke (1) kawasan (1) kawasan industri (1) kemasan (1) kerja di rumah (1) kitchen set (1) kontemporer (1) kosan (1) kost (1) krem (1) laci (1) lamination (1) lithography (1) living room (1) livingroom (1) lounge (1) Luscher MultiDX (1) masterplan (1) matt (1) meja kerja (1) metalworking (1) mewah (1) minimalis (1) minimalist (1) modern (1) mold (1) molding (1) Monomer (1) murah (1) murah. (1) Neutron (1) nuansa remaja (1) offset (1) online design (1) open ceiling (1) outdoor (1) overprint (1) pabrik (1) pantai (1) pencahayaan (1) perumahan (1) pesan desain (1) pesan desain toko (1) plug (1) Polimer (1) Polyaddition (1) Polycondensation (1) Polymerization (1) Polystyrene (1) printing ink (1) Product Creation (1) product function (1) produk katalog (1) Protons (1) Raster Image Processor (1) register (1) rendering (1) resepsionis (1) responsibility (1) resto industrial (1) RIP (1) Rotary (1) ruang kantor (1) ruang keluarga (1) ruang kerja (1) ruang tamu (1) ruang tunggu (1) ruko (1) rumah (1) rumah hook (1) rumah susun (1) rumah tropis (1) scandinavian (1) screen printing (1) sederhana (1) sempoa (1) setup (1) simple sederhana (1) specifications (1) spring (1) steel (1) Struktur Plastik (1) suspension (1) sweet home (1) taman (1) tampak (1) tampak rumah (1) Technological Change (1) terbaru (1) termurah (1) toko aksesoris (1) toko asesoris (1) trapping (1) two cavity (1) unscrewing (1) use (1) uv varnish (1) via online (1) website (1)