Duration and Cost of Product Development

Most people without experience in product  development are astounded by how much time and money are required to develop a new product. The reality is that very few products can be developed in less than 1 year, many require 3 to 5 years, and some take as long as 10 years. Exhibit 1-1 shows five engineered, discrete products. Exhibit 1-3 is a table showing the approximate scale of the associated product development efforts along with some  distinguishing characteristics of the products.
The cost of product development is roughly  proportional to the number of people on the project team and to the duration of the project. In addition to expenses for development effort, a firm will almost always have to make some investment in the tooling and equipment required for production. This expense is often as large as the rest of the product  development budget; however, it is sometimes useful to think of these expenditures as part of the fixed costs of production. For reference purposes, this production investment is listed in Exhibit 1-3 along with the development expenditures.



  • READ MORE.......







  • References and Bibliography
    A wide variety of resources for this chapter and for the rest of the book are available on the Internet. These resources include data, templates, links to suppliers, and lists of publications. Current resources may be accessed via www.ulrich-eppinger.net Wheelwright and Clark devote much of their book to the very early stages of product development, which we cover in less detail. Wheelwright, Stephen c., and Kim B. Clark, Revolutionizing Product Development: Quantum Leaps in Speed, Efficiency, and Quality, The Free Press, New York, 1992. Katzenbach and Smith write about teams in general, but most of their insights apply to product development teams as well. Katzenbach, Jon R., and Douglas K. Smith, The Wisdom of Teams: Creating the High-Performance Organization, Harvard Business School Press, Boston, 1993. These three books provide rich narratives of development projects, including fascinating descriptions of the intertwined social and technical processes. Kidder, Tracy, The Soul of a New Machine, Avon Books, New York, 1981.
    Sabbagh, Karl, Twenty-First-Century Jet: The Making and Marketing of the Boeing 777, Scribner, New York, 1996. Walton, Mary, Car: A Drama of the American Workplace, Norton, New York, 1997.


    Copper-Base Alloys, Brass

    When copper is alloyed with zinc, it is usually called brass. If it is alloyed with another
    element, it is often called bronze. Sometimes the other element is specified too, as, for example, tin bronze or phosphor bronze. There are hundreds of variations in each category. 

    Brass with 5 to 15 Percent Zinc The low-zinc brasses are easy to cold work, especially those with the higher zinc content. They are ductile but often hard to machine. The corrosion resistance is good. Alloys included in this group are gilding brass (5 percent Zn), commercial bronze (10 percent Zn), and red brass (15 percent Zn). Gilding brass is used mostly for jewelry and articles to be gold-plated; it has the same ductility as copper but greater strength, accompanied by poor machining characteristics. Commercial bronze is used for jewelry and for forgings and stampings, because of its ductility. Its machining properties are poor, but it has excellent cold-working properties. Red brass has good corrosion resistance as well as high-temperature strength. Because of this it is used a great deal in the form of tubing or piping to carry hot water in such applications as radiators or condensers.

    Brass with 20 to 36 Percent Zinc
    Included in the intermediate-zinc group are low brass (20 percent Zn), cartridge brass (30 percent Zn), and yellow brass (35 percent Zn). Since zinc is cheaper than copper, these alloys cost less than those with more copper and less zinc. They also have better machinability and slightly greater strength; this is offset, however, by poor corrosion resistance and the possibility of cracking at points of residual stresses. Low brass is very
    similar to red brass and is used for articles requiring deep-drawing operations. Of the copper-zinc alloys, cartridge brass has the best combination of ductility and strength. Cartridge cases were originally manufactured entirely by cold working; the process consisted of a series of deep draws, each draw being followed by an anneal to place the material in condition for the next draw, hence the name cartridge brass. Although the hot-working ability of yellow brass is poor, it can be used in practically any other fabricating
    process and is therefore employed in a large variety of products.
    When small amounts of lead are added to the brasses, their machinability is greatly improved and there is some improvement in their abilities to be hot-worked. The addition of lead impairs both the cold-working and welding properties. In this group are low-leaded brass (32 1 /2 percent Zn, 1/ 2 percent Pb), high-leaded brass (34 percent Zn, 2 percent Pb), and free-cutting brass (35 1/2 percent Zn, 3 percent Pb). The  low-leaded brass is not only easy to machine but has good cold-working properties. It is used for
    various screw-machine parts. High-leaded brass, sometimes called engraver’s brass, is used for instrument, lock, and watch parts. Free-cutting brass is also used for screwmachine parts and has good corrosion resistance with excellent mechanical properties. Admiralty metal (28 percent Zn) contains 1 percent tin, which imparts excellent corrosion resistance, especially to saltwater. It has good strength and ductility but only
    fair machining and working characteristics. Because of its corrosion resistance it is used in power-plant and chemical equipment. Aluminum brass (22 percent Zn) contains 2 percent aluminum and is used for the same purposes as admiralty metal, because it has nearly the same properties and characteristics. In the form of tubing or piping, it is favored over admiralty metal, because it has better resistance to erosion caused by highvelocity water. 

    Brass with 36 to 40 Percent Zinc
    Brasses with more than 38 percent zinc are less ductile than cartridge brass and cannot be cold-worked as severely. They are frequently hot-worked and extruded. Muntz metal (40 percent Zn) is low in cost and mildly corrosion-resistant. Naval brass has the same composition as Muntz metal except for the addition of 0.75 percent tin, which contributes to the corrosion resistance.


  • READ MORE.......




  • Mechanical Engineering
    McGraw−Hill Primis
    ISBN: 0−390−76487−6
    Text:
    Shigley’s Mechanical Engineering Design,
    Eighth Edition
    Budynas−Nisbett




    Who Designs and Develops Products?

    Product development is an interdisciplinary activity requiring contributions from nearly all the functions of a firm; however, three functions are almost always central to a product development project:

    • Marketing: The marketing function mediates the interactions between the firm and its customers. Marketing often facilitates the identification of product opportunities, the definition of market segments, and the identification of customer needs. Marketing also typically arranges for communication between the firm and its customers, sets target prices, and oversees the launch and promotion of the product.

    • Design: The design function plays the lead role in defining the physical form of the product to best meet customer needs. In this context, the design function includes engineer; ing design (mechanical, electrical, software, etc.) and industrial design (aesthetics, ergonomics, user interfaces).

    • Manufacturing: The manufacturing function is primarily responsible for designing, operating, and/or coordinating the production system in order to produce the product. Broadly defined, the manufacturing function also often includes purchasing, distribution, and installation. This collection of activities is sometimes called the supply chain.

    Different individuals within these functions often have specific disciplinary training in areas such as market research, mechanical engineering, electrical engineering, materials science, or manufacturing operations. Several other functions, including finance and sales, are frequently involved on a part-time basis in the development of a new product. 

    Beyond these broad functional categories, the specific composition of a development team depends on the particular characteristics of the product. Few products are developed by a single individual. The collection of individuals developing a product forms the project team. This team usually has a single team leader, who could be drawn from any of the functions of the firm. The team can be thought of as consisting of a core team and an extended team. In order to work together effectively, the core team usually remains small enough to meet in a conference room, while the extended team may consist of dozens, hundreds, or even thousands of other members. (Even though the term team is inappropriate for a group of thousands, the word is often used in this context to emphasize that the group must work toward a common goal.) In most cases, a team within the firm will be supported by individuals or teams at partner companies, suppliers, and consulting firms . Sometimes, as is the case for the development of a new airplane, the number of external team members may be even greater than that of the team within the company whose name will appear on the final product. The  composition of a team for the development of an electromechanical product of modest complexity is
    shown in Exhibit 1-2.
    Throughout this book we assume that the team is situated within a firm. In fact, a for-profit manufacturing company is the most common institutional setting for product development, but other settings are possible. Product development teams sometimes work within consulting firms, universities, government agencies, and nonprofit organizations.

  • READ MORE.......



  • References and Bibliography
    Exercises
    A wide variety of resources for this chapter and for the rest of the book are available on the Internet. These resources include data, templates, links to suppliers, and lists of publications. Current resources may be accessed via www.ulrich-eppinger.net
    Wheelwright and Clark devote much of their book to the very early stages of product development, which we cover in less detail.
    Wheelwright, Stephen c., and Kim B. Clark, Revolutionizing Product Development: Quantum Leaps in Speed, Efficiency, and Quality, The Free Press, New York, 1992.
    Katzenbach and Smith write about teams in general, but most of their insights apply to product development teams as well.
    Katzenbach, Jon R., and Douglas K. Smith, The Wisdom of Teams: Creating the High-Performance Organization, Harvard Business School Press, Boston, 1993.
    These three books provide rich narratives of development projects, including fascinating descriptions of the intertwined social and technical processes.
    Kidder, Tracy, The Soul of a New Machine, Avon Books, New York, 1981.
    Sabbagh, Karl, Twenty-First-Century Jet: The Making and Marketing of the Boeing 777, Scribner, New York, 1996.
    Walton, Mary, Car: A Drama of the American Workplace, Norton, New York, 1997.




    for STEP BY STEP GUIDE unigraphics simple tutorial please visit.........
    www.unigraphicsimpletutorial.blogspot.com

    ---or---

  • www.unigraphic-simple-tutorial.com





  • Titanium

    Titanium and its alloys are similar in strength to moderate-strength steel but weigh half
    as much as steel. The material exhibits very good resistence to corrosion, has low thermal conductivity, is nonmagnetic, and has high-temperature strength. Its modulus of elasticity is between those of steel and aluminum at 16.5 Mpsi (114 GPa). Because of its many advantages over steel and aluminum, applications include: aerospace and military aircraft structures and components, marine hardware, chemical tanks and processing equipment, fluid handling systems, and human internal replacement devices. The disadvantages of titanium are its high cost compared to steel and aluminum and the difficulty of machining it.




  • READ MORE.......



  • Mechanical Engineering
    McGraw−Hill Primis
    ISBN: 0−390−76487−6
    Text:
    Shigley’s Mechanical Engineering Design,
    Eighth Edition
    Budynas−Nisbett


    Labels

    2d (1) 3D (1) ABG (1) agen JNE (1) almari (1) Alufoil (1) Aluminum Foil (1) anilox roll (1) apartemen (1) Atom (1) autocad (1) backdrop logo (1) bagian dalam (1) bangunan (1) batu alam (1) berkualitas (1) bermutu (1) berpengalaman (1) bertingkat (1) birdview (1) black and white (1) botol plastik (1) cafe (1) classic (1) coklat (1) cold rolled sheet (1) Computer To Plate (1) Consumer Understanding (1) control movement (1) counter (1) CTP (1) denah berwarna (1) denah kantor (1) desain (1) desain cuci mobil (1) desain kamar (1) desain produk (1) design (1) Design and Function (1) design meja (1) Design restaurant (1) design rumah (1) di daerah (1) dinding bata (1) dining (1) Duromer (1) Electrons (1) etnik (1) factors (1) flexo packaging (1) flexo printing (1) food (1) furniture (1) gallus (1) gambar (1) gaya modern (1) gloss (1) grc kotak (1) Halftone (1) hanya 550 ribu (1) harga murah (1) hasil cepat (1) hotel (1) industrial (1) injection (1) Injection Mold (1) ink (1) inovatif (1) install (1) interior (1) interior rumah (1) jasa gambar rumah (1) jasa 3d (1) jasa arsitek (1) jasa desain (1) jasa desain 3d (1) jasa design (1) jasa designer (1) jasa gambar (1) kamar tidur (1) kamar tidur anak (1) kampus (1) karaoke (1) kawasan (1) kawasan industri (1) kemasan (1) kerja di rumah (1) kitchen set (1) kontemporer (1) kosan (1) kost (1) krem (1) laci (1) lamination (1) lithography (1) living room (1) livingroom (1) lounge (1) Luscher MultiDX (1) masterplan (1) matt (1) meja kerja (1) metalworking (1) mewah (1) minimalis (1) minimalist (1) modern (1) mold (1) molding (1) Monomer (1) murah (1) murah. (1) Neutron (1) nuansa remaja (1) offset (1) online design (1) open ceiling (1) outdoor (1) overprint (1) pabrik (1) pantai (1) pencahayaan (1) perumahan (1) pesan desain (1) pesan desain toko (1) plug (1) Polimer (1) Polyaddition (1) Polycondensation (1) Polymerization (1) Polystyrene (1) printing ink (1) Product Creation (1) product function (1) produk katalog (1) Protons (1) Raster Image Processor (1) register (1) rendering (1) resepsionis (1) responsibility (1) resto industrial (1) RIP (1) Rotary (1) ruang kantor (1) ruang keluarga (1) ruang kerja (1) ruang tamu (1) ruang tunggu (1) ruko (1) rumah (1) rumah hook (1) rumah susun (1) rumah tropis (1) scandinavian (1) screen printing (1) sederhana (1) sempoa (1) setup (1) simple sederhana (1) specifications (1) spring (1) steel (1) Struktur Plastik (1) suspension (1) sweet home (1) taman (1) tampak (1) tampak rumah (1) Technological Change (1) terbaru (1) termurah (1) toko aksesoris (1) toko asesoris (1) trapping (1) two cavity (1) unscrewing (1) use (1) uv varnish (1) via online (1) website (1)