Quick-Build Products

For the development of some products, such as software and many electronics products, building and testing prototype models has become such a rapid process that the design-build-test cycle can be repeated many times. In fact, teams can take advantage of rapid iteration to achieve a more flexible and responsive product development process, sometimes called a spiral product development process. Following concept development in this process, the system-level design phase entails decomposition of the product into high-, medium-, and low-priority features. This is followed by several cycles of design, build, integrate, and test activities, beginning with the highest-priority items. This process takes advantage of the fast prototyping cycle by using the result of each cycle to learn how to modify the priorities for the next cycle. Customers may even be involved in the testing process after one or more cycles. When time or budget runs out, usually all of the high- and medium-priority features have been incorporated into the evolving product, and the low-priority features may be omitted until the next product generation.
References and Bibliography
Many current resources are available on the Internet via www.ulrich-eppinger.net
Stage-gate product development processes have been dominant in manufacturing firms for the past 30 years. Cooper describes the modem stage-gate process and many of its enabling practices.
Cooper, Robert G., Winning at New Products: Accelerating the Process from Idea to Launch, third edition, Perseus Books, Cambridge, MA, 2001.
 

Thermoplastic materials

Two main categories of Thermoplastic materials are amorphous and Crystaline. While some materials classified in other categories and some of the material is a combination of both. Polymers like Polymethylmethacrylate, Polycarbonate and Polystyrene is an amorphous polymer chains, ie with a random molecular chain structure and become actively engaged in a wide temperature range. This means that the material is not called liquid but more accurate to say softened. And this material begins to soften so heating is carried out. Increasingly soft as the heat absorbed, until finally absorbing a lot of heat and eventually called the "melting".




Amorphous polymers do not have a specific melting point. At low temperatures they are hard, dense, brittle and luster, at high temperatures such as rubber or leather. Temperature when the transition occurs is called the Glass-Transition Temperature (Tg), also called Point glass or glass temperature.

In Crystaline material, regular molecular chain structure and become active only after the material is heated to its melting point. This means that these materials do not pass through a phase softened, but remained solid until heated at certain temperature and instantly melted material.



Differences property amorphous and Crystaline


Amorphous

* Net

* Low Shrinkage

* Softened

* The high mashed

* Lack of chemical resistant


Crystaline

* Opaque

* Depreciation high

* Melt

* Low Power mashed

* Hold chemicals



Examples of materials based on molecular structure


Amorphous

* ABS

* Acrylic

* Polyamide

* Polyacrylate

* Polycarbonate

* Polystyrene

* Polyurethane


Crystaline

* Acetal

* Nylon

* Polyester (PBT)

* Polyethylene

* Polyethyleneterephthalate (PET)

* Polypropylene

* Polyvinylcloride (PVC)



To improve the ductile properties of amorphous glass below its transition temperature we can mix it with some elastomers. This is known as an elastomer polymers dimodofikasi into rubber. Some examples of the elastomer is Acrylates, Butyls, Fluorosilicon, Fuorocarbons Polysulfids polyurethane.

The ability of plastics to return to his native structure after heating and then softened or melted in other words, reversible process called Thermoplastic. If we raise the temperature above the Tg of his skin then first became such as rubber along with the addition of temperature. finally at a temperature above its melting point at Crystaline become viscous fluid with a viscosity decreases with further increase in temperature. In the liquid phase resembles a plastic ice cream can be formed. Because of its recyclable plastic can then be formed up to several times, but repetition of heating and cooling causes the reduction in the quality of the plastic.

When Thermoplastic deformed or are interested, this process is called orientation. Like the metal polymer becomes anisotropic. Specimens become more powerful and solid in the direction of pull than the transverse direction. Another important thing is the ability of water-absorbing polymer. Water makes the plastic becomes more plastic. With the addition of moisture, Glasstransition Temperature, voltage and modulus of elasticity will be lower. Dimensional changes also occur due to moisture environment.


(Bid / multiple sources)

High-Risk Products

The product development process addresses many types of risk. These include technical
risk (Will the product function properly?), market risk (Will customers like what the team
develops?), and budget and schedule risk (Can the team complete the project on time an
within budget?). High-risk products are those that entail unusually large uncertainties related
to the technology or market so that there is substantial technical or market risk. The generic product development process is modified to face high-risk situations by taking steps to address the largest risks in the early stages of product development. This usually requires completing some design and test activities earlier in the process. For example, when there is great uncertainty regarding customer acceptance of a new product, concept testing using renderings or user-interface prototypes may be done very early in the process in order to reduce the market uncertainty and risk. If there is high uncertainty related to technical performance of the product, it makes sense to build working models of the key features and to test these earlier in the process. Multiple solution paths may be explored in parallel to ensure that one of the solutions succeeds. Design reviews must assess levels of risk on a regular basis, with the expectation that risks are being reduced over time and not being postponed.


  • READ MORE.......




  • References and Bibliography
    Many current resources are available on the Internet via www.ulrich-eppinger.net
    Stage-gate product development processes have been dominant in manufacturing firms for the past 30 years. Cooper describes the modem stage-gate process and many of its enabling practices.
    Cooper, Robert G., Winning at New Products: Accelerating the Process from Idea to Launch, third edition, Perseus Books, Cambridge, MA, 2001.


    for STEP BY STEP GUIDE solidwork simple tutorial please visit.........
    www.solidworksimpletutorial.blogspot.com

    ---or---

  • www.solidwork-simple-tutorial.com



  • basic theory of plastic

    Plastic is an organic material formed from macromolecules and processed through a chemical process or through the synthesis of other materials. The word itself comes from the plastic plastikos (Greek) which means it can be formed. Plastics can be formed, cast or merged with another with relative ease. Plastic itself commercially daiam various forms of sheets, plates, film, rolls, and tube granulat with various cross-sectional shape. Polymer word was first used in 1866. Previous polymers made from natural organic material of animals and plants. With a variety of chemical reactions in the modified cellulose acetate cellulose, is used to for the manufacture of photographic film, sheet packaging, and textile fibers. Cellulose nitrate is also converted into cellulose for plastics, explosives, rayon and varnished. The first synthetic polymers which man is phenol-formaldehyde, a type of thermoset that was developed in 1906 called bakelit rian (the commercial name, LH Backeland, 1863-1944)


    The development of modern plastics technology began in 1920, when the raw materials needed to manufacture the polymer material is then extracted from the tin and petroleum. Ethylene is the first example of such nentah materials, and the forming polyethylene block. Ethylene is a product of the reaction between acetylen with hydrogen, while acetylen is the result of reaction between coke and methane. Similarly, polypropylene, Polyvinylchlonde, Polymethyl methacrylate, polycarbonate and others made the same way. These materials are known as synthetic organic polymer. Although in Polyethylene only Carbon and Hydrogen atoms are involved, other polymers can be combined with chlorine, Florin, sulfur, silicon, nitrogen and oxygen. The result is to make the other advantages of each polymer.

    The reason people use plastic materials as a basic material goods / tools are:
    - Easily carried or formed
    - Do not conduct electricity
    - Able to pull a fairly high
    - Low specific gravity
    - Etc.

    When compared to metal, plastic has advantages and disadvantages as follows;
    1. Profit
    a. Mild
    b. Economical in progress
    c. Corrosion-resistant
    d. Vibration damping
    e. Low heat dissipation
    f. Surface / better display. Can be recycled (except type termosett). Complex formation can be manufactured

    2. Loss
    a. Low strength
    b. Low thermal resistance
    c. Dimensions are not Stable
    d. Easy to change nature.
    e. Difficult repairs.
    f. More suitable for mass production
    g. For some types of polymers are still expensive.
    ( bid / multiple sources )



    for STEP BY STEP GUIDE solidwork simple tutorial please visit.........
    www.solidworksimpletutorial.blogspot.com

    ---or---


  • www.solidwork-simple-tutorial.com






  • Labels

    2d (1) 3D (1) ABG (1) agen JNE (1) almari (1) Alufoil (1) Aluminum Foil (1) anilox roll (1) apartemen (1) Atom (1) autocad (1) backdrop logo (1) bagian dalam (1) bangunan (1) batu alam (1) berkualitas (1) bermutu (1) berpengalaman (1) bertingkat (1) birdview (1) black and white (1) botol plastik (1) cafe (1) classic (1) coklat (1) cold rolled sheet (1) Computer To Plate (1) Consumer Understanding (1) control movement (1) counter (1) CTP (1) denah berwarna (1) denah kantor (1) desain (1) desain cuci mobil (1) desain kamar (1) desain produk (1) design (1) Design and Function (1) design meja (1) Design restaurant (1) design rumah (1) di daerah (1) dinding bata (1) dining (1) Duromer (1) Electrons (1) etnik (1) factors (1) flexo packaging (1) flexo printing (1) food (1) furniture (1) gallus (1) gambar (1) gaya modern (1) gloss (1) grc kotak (1) Halftone (1) hanya 550 ribu (1) harga murah (1) hasil cepat (1) hotel (1) industrial (1) injection (1) Injection Mold (1) ink (1) inovatif (1) install (1) interior (1) interior rumah (1) jasa gambar rumah (1) jasa 3d (1) jasa arsitek (1) jasa desain (1) jasa desain 3d (1) jasa design (1) jasa designer (1) jasa gambar (1) kamar tidur (1) kamar tidur anak (1) kampus (1) karaoke (1) kawasan (1) kawasan industri (1) kemasan (1) kerja di rumah (1) kitchen set (1) kontemporer (1) kosan (1) kost (1) krem (1) laci (1) lamination (1) lithography (1) living room (1) livingroom (1) lounge (1) Luscher MultiDX (1) masterplan (1) matt (1) meja kerja (1) metalworking (1) mewah (1) minimalis (1) minimalist (1) modern (1) mold (1) molding (1) Monomer (1) murah (1) murah. (1) Neutron (1) nuansa remaja (1) offset (1) online design (1) open ceiling (1) outdoor (1) overprint (1) pabrik (1) pantai (1) pencahayaan (1) perumahan (1) pesan desain (1) pesan desain toko (1) plug (1) Polimer (1) Polyaddition (1) Polycondensation (1) Polymerization (1) Polystyrene (1) printing ink (1) Product Creation (1) product function (1) produk katalog (1) Protons (1) Raster Image Processor (1) register (1) rendering (1) resepsionis (1) responsibility (1) resto industrial (1) RIP (1) Rotary (1) ruang kantor (1) ruang keluarga (1) ruang kerja (1) ruang tamu (1) ruang tunggu (1) ruko (1) rumah (1) rumah hook (1) rumah susun (1) rumah tropis (1) scandinavian (1) screen printing (1) sederhana (1) sempoa (1) setup (1) simple sederhana (1) specifications (1) spring (1) steel (1) Struktur Plastik (1) suspension (1) sweet home (1) taman (1) tampak (1) tampak rumah (1) Technological Change (1) terbaru (1) termurah (1) toko aksesoris (1) toko asesoris (1) trapping (1) two cavity (1) unscrewing (1) use (1) uv varnish (1) via online (1) website (1)