additives

To improve one of the properties of a polymer, usually a polymer will be mixed with a material called additives. The function of these additives is to modify or improve certain properties in accordance with the wishes of the users, such as strength, color, water resistance, heat resistance, electrical resistance and others. Fillers are one of the additive to improve strength, hardness, abrasion resistance, dimensional stability. Plastisizers is additive to menambahn flexibility and lowers the level of soft polymers with glass transition temperaturenya. Molukuler Weight Additive has a low-power high interference. Secondary bond strength is reduced so as to make soft and flexible polymer. Commonly used in PVC, thin sheets, films, cylinders. Most polymers are affected by ultraviolet light (sunlight) and oxygen where it will weaken the influence of the main bonding polymers. Additive used is Carbon Black (soot). These additives absorb a high percentage of ultraviolet radiation. The trick is to add antioxidant polymers. The amount of color variation is needed in the plastic additives required Colorant (dye). This material is organic (Dyes) and inorganic (pigments). Selection of colorant depends on temperature and light in which the pigments dispersed in the polymer. Another additive is heat resistant to the flame retardants. These additives reduce the Flammability of these polymers. When the high temperature most polymers start to burn, burning Traffic depends on the composition of each polymer. Examples of these additives is Compound Chlorine, bromine and Phosphorus. Lubricants can be added to polymers to reduce friction during the manufacturing process. Other uses is to avoid the product sticking to the mold. Can also be a deterrent to the mutual attachment of polymers such as polymer-polymer thin film layer. (bid / multiple sources)

Product Development Process Flows

The product development process generally follows a structured flow of activity and information flow. This allows us to draw process flow diagrams illustrating the process, as shown in Exhibit 2-5. The generic process flow diagram depicts the process used to develop market-pull, technology-push, platform, process-intensive, customized, and high-risk products. Each product development phase (or stage) is followed by a review (or gate) to confirm that the phase is completed and to determine whether the project proceeds. Quick-build products enable a spiral product development process whereby detail design, prototyping, and test activities are repeated a number of times. The process flow diagram for development of complex systems shows the decomposition into parallel stages of work on the many subsystems and components. Once the product development process has been established within an organization, a process flow diagram is used to explain the process to everyone on the team. References and Bibliography Many current resources are available on the Internet via www.ulrich-eppinger.net Stage-gate product development processes have been dominant in manufacturing firms for the past 30 years. Cooper describes the modem stage-gate process and many of its enabling practices. Cooper, Robert G., Winning at New Products: Accelerating the Process from Idea to Launch, third edition, Perseus Books, Cambridge, MA, 2001.

Thermosetting

When the long chain molecules in the polymer related to the opposite (cross-linked) in rule 3 dimensions, the structure becomes one big mclekul with strong covalent bonds. Because during the polymerization and the formation of a network equipped with a permanent structure and could not return to its origin (irreversible), it is called Thermosetting. Thermosetting polymer has a glass transition temperature is not specific. Thermosett polymerization process is generally divided into two phases. The first stage is to separate polymer molecules into linear chains. The second stage is the cross-linking occurs with heat and pressure in the molding process. Due to the nature of the bond, the strength and hardness of thermosett not like thermoplastic, which is not affected by temperature and deformation. One type is termosett Phenolic, which is the result of reactions between Phenol and formaldehyde. A common characteristic of thermosets is a better mechanical properties, heat resistance, chemical resistance, electrical resistance and better dimensional stability. But if the temperature rises high, thermosetting polymers will burn, and burn. Some examples of polymers termosett are as follows: a. Alkyds Is a mixture of alcohol and acid, has the advantage of an excellent electrical insulator, resistant crushed and dimensional stability and low water absorption. b. Aminos Is the urea and melamine has the advantage depends on its composition. Generally amino hard and dense, resistant to abrasion and scratch resistance. Used commonly in furniture, toilet seat, handle and box-box meals. c. Epoxy Mechanical and electrical properties have excellent dimensional stability, a strong adhesive and heat and chemical resistant. Its application is for electronic components that require mechanical strength and good insulation .. d. Phenolics Although fragile and brittle Another advantage is the dimension of a stable, high resistance to heat, water, electrical and chemical. Usually used for handles, panels, telephone, glue material to stone grinding, electronic components, connectors. e. Polyester Have good mechanical properties, heat resistance and chemical resistance. Usually used for a boat, chairs, automotive body. f. Polyamides Good mechanical properties, scratch resistance, low friction, excellent electrical properties. Usually used for seals, valves, piston rings, part-part aerospace, high voltage connectors and safety equipment. g. Silicones Properties are generally good electrical properties, heat resistance and chemical materials. Commonly used for gaskets, seals, waterproof materials. (Bid / multiple sources)

Complex Systems

Larger-scale products such as automobiles and airplanes are complex systems comprised of many interacting subsystems and components. When developing complex systems, modifications to the generic product development process address a number of system-level issues. The concept development phase considers the architecture of the entire system, and multiple architectures may be considered as competing concepts for the overall system. The system-level design phase becomes critical. During this phase, the system is decomposed into subsystems and these further into many components. Teams are assigned to develop each component. Additional teams are assigned the special challenge of integrating components into the subsystems and these into the overall system. Detail design of the components is a highly parallel process in which the many development teams work at once, usually separately. Managing the network of interactions across the components and subsystems is the task of system engineering specialists of many kinds. The testing and refinement phase includes not only system integration, but also extensive testing and validation at all levels. References and Bibliography Many current resources are available on the Internet via www.ulrich-eppinger.net Stage-gate product development processes have been dominant in manufacturing firms for the past 30 years. Cooper describes the modem stage-gate process and many of its enabling practices. Cooper, Robert G., Winning at New Products: Accelerating the Process from Idea to Launch, third edition, Perseus Books, Cambridge, MA, 2001.

Labels

2d (1) 3D (1) ABG (1) agen JNE (1) almari (1) Alufoil (1) Aluminum Foil (1) anilox roll (1) apartemen (1) Atom (1) autocad (1) backdrop logo (1) bagian dalam (1) bangunan (1) batu alam (1) berkualitas (1) bermutu (1) berpengalaman (1) bertingkat (1) birdview (1) black and white (1) botol plastik (1) cafe (1) classic (1) coklat (1) cold rolled sheet (1) Computer To Plate (1) Consumer Understanding (1) control movement (1) counter (1) CTP (1) denah berwarna (1) denah kantor (1) desain (1) desain cuci mobil (1) desain kamar (1) desain produk (1) design (1) Design and Function (1) design meja (1) Design restaurant (1) design rumah (1) di daerah (1) dinding bata (1) dining (1) Duromer (1) Electrons (1) etnik (1) factors (1) flexo packaging (1) flexo printing (1) food (1) furniture (1) gallus (1) gambar (1) gaya modern (1) gloss (1) grc kotak (1) Halftone (1) hanya 550 ribu (1) harga murah (1) hasil cepat (1) hotel (1) industrial (1) injection (1) Injection Mold (1) ink (1) inovatif (1) install (1) interior (1) interior rumah (1) jasa gambar rumah (1) jasa 3d (1) jasa arsitek (1) jasa desain (1) jasa desain 3d (1) jasa design (1) jasa designer (1) jasa gambar (1) kamar tidur (1) kamar tidur anak (1) kampus (1) karaoke (1) kawasan (1) kawasan industri (1) kemasan (1) kerja di rumah (1) kitchen set (1) kontemporer (1) kosan (1) kost (1) krem (1) laci (1) lamination (1) lithography (1) living room (1) livingroom (1) lounge (1) Luscher MultiDX (1) masterplan (1) matt (1) meja kerja (1) metalworking (1) mewah (1) minimalis (1) minimalist (1) modern (1) mold (1) molding (1) Monomer (1) murah (1) murah. (1) Neutron (1) nuansa remaja (1) offset (1) online design (1) open ceiling (1) outdoor (1) overprint (1) pabrik (1) pantai (1) pencahayaan (1) perumahan (1) pesan desain (1) pesan desain toko (1) plug (1) Polimer (1) Polyaddition (1) Polycondensation (1) Polymerization (1) Polystyrene (1) printing ink (1) Product Creation (1) product function (1) produk katalog (1) Protons (1) Raster Image Processor (1) register (1) rendering (1) resepsionis (1) responsibility (1) resto industrial (1) RIP (1) Rotary (1) ruang kantor (1) ruang keluarga (1) ruang kerja (1) ruang tamu (1) ruang tunggu (1) ruko (1) rumah (1) rumah hook (1) rumah susun (1) rumah tropis (1) scandinavian (1) screen printing (1) sederhana (1) sempoa (1) setup (1) simple sederhana (1) specifications (1) spring (1) steel (1) Struktur Plastik (1) suspension (1) sweet home (1) taman (1) tampak (1) tampak rumah (1) Technological Change (1) terbaru (1) termurah (1) toko aksesoris (1) toko asesoris (1) trapping (1) two cavity (1) unscrewing (1) use (1) uv varnish (1) via online (1) website (1)