Product Development Organizations

In addition to crafting an effective development process, successful firms must organize their product development staffs effectively. In this section, we describe several types of organizations used for product development and offer guidelines for choosing among these options. Organizations Are Formed by Establishing Links among Individuals A product development organization is the scheme by which individual designers and developers are linked together into groups. The links among individuals may be formal or informal and include, among others, these types: • Reporting relationships: Reporting relationships give rise to the classic notion of supervisor and subordinate. These are the formal links most frequently shown on an organization chart. • Financial arrangements: Individuals are linked by being part of the same financial entity, such as that defined by a particular budget category or profit-and-loss statement. • Physical layout: Links are created between individuals when they share the same office, floor, building, or site. These links are often informal, arising from spontaneous encounters while at work. Any particular individual may be linked in several different ways to other individuals. For example, an engineer may be linked by a reporting relationship to another engineer in a different building, while being linked by physical layout to a marketing person sitting in the next office. The strongest organizational links are typically those involving performance evaluation, budgets, and other resource allocations.
References and Bibliography
Many current resources are available on the Internet via www.ulrich-eppinger.net Stage-gate product development processes have been dominant in manufacturing firms for the past 30 years. Cooper describes the modem stage-gate process and many of its enabling practices. Cooper, Robert G., Winning at New Products: Accelerating the Process from Idea to Launch, third edition, Perseus Books, Cambridge, MA, 2001.
 

Plastic Manufacturing Process

The establishment of the injection process This process is the process by which plastic pellets melt with the heat and drain liquid into a closed mold. Then the material is cooled and solidified to form the product in accordance with their prints. Then the plastic that has formed is removed from cavitynya the ejection process. Detailed process sequence is as follows: a. Charging Granules of plastic material which is collected in the hopper by gravity will fall and fall into the injection cylinder. Within this cylindrical plastic granules are heated either by heating or heater because the process of a rotating screw. With terisinya nozzle by the spindle screw plastic material will be pushed backward, turning to a position that we have set in accordance with the volume of product to be in print. b. Mould Closing This step closes the plastic molds with moving plate moves toward the fixed plate. Pressure that occurs between the parts of the plastic mold is the maximum pressure plate moves to close the mold until the lock position. The process is called Clamping Force. The capacity of an injection machine is identified with a maximum pressure capability (Clamping Force). c. Forward Barrel [3] Is a step toward moving cylinder injection mold plastic to touch the mouth of the nozzle sprue with a certain pressure. This movement takes place after step and a general, hydraulic clamping. d. Cavity filling The next step is filling cavity. Ready formed plastic fluid driven by a screw (special threaded shaft) into the mold. In this stage the plastic has several phases, namely the filling, packing, and holding. e. Cooling After the mold cavities filled next step is to cool the liquid to solid plastic. This process is followed by a return they will screw into position. f. Mould open The next step is to open the mold. g. Ejection This step is the movement of drivers who are generally located in the middle of the plate to move and push the plastic mold ejector system. This is the last step of the cycle of the injection process. (Bid / multiple sources)

The AMF Development Process

AMF Bowling is a market-pull enterprise. AMF generally drives its development process with a market need and seeks out whatever technology is required to meet that need. Its competitive advantage arises from strong marketing channels, strong brand recognition, and a large installed base of equipment, not from any single proprietary technology. For this reason, the technology-push approach would not be appropriate. AMF products are assembled from components fabricated with relatively conventional processes such as molding, casting, and machining. So the AMF product is clearly not process intensive in the way a food product or a chemical is. Bowling equipment is rarely customized for a particular customer; most of the product development at AMF is aimed at new models of products, rather than at the customization of existing models. For this reason, the customization approach is also inappropriate. AMF chose to establish a development process similar to the generic process. The process proposed by the AMF engineering manager is illustrated in Exhibit 2-6. The representation of the development process used by AMF is a hybrid of those used in Exhibits 2-2 and 2-5, in that it shows the individual activities in the development process as well as the roles of the different development functions in those activities. Note that AMF defines the key functions in product development as marketing, engineering!design, manufacturing, quality assurance, purchasing, and customer service. Also note that there are three major milestones in the process: the project approval, the beginning of tooling fabrication, and the production release. Each of these milestones follows a major review. Although AMF established a standard process, its managers realized that this process would not necessarily be suitable in its entirety for all AMF products. For example, a few of AMF's new products are based on technology platforms. When platform products are developed, the team assumes the use of an existing technology platform during concept development. Nevertheless, the standard development process is the baseline from which a particular project plan begins.
References and Bibliography
Many current resources are available on the Internet via www.ulrich-eppinger.net Stage-gate product development processes have been dominant in manufacturing firms for the past 30 years. Cooper describes the modem stage-gate process and many of its enabling practices. Cooper, Robert G., Winning at New Products: Accelerating the Process from Idea to Launch, third edition, Perseus Books, Cambridge, MA, 2001.

additives

To improve one of the properties of a polymer, usually a polymer will be mixed with a material called additives. The function of these additives is to modify or improve certain properties in accordance with the wishes of the users, such as strength, color, water resistance, heat resistance, electrical resistance and others. Fillers are one of the additive to improve strength, hardness, abrasion resistance, dimensional stability. Plastisizers is additive to menambahn flexibility and lowers the level of soft polymers with glass transition temperaturenya. Molukuler Weight Additive has a low-power high interference. Secondary bond strength is reduced so as to make soft and flexible polymer. Commonly used in PVC, thin sheets, films, cylinders. Most polymers are affected by ultraviolet light (sunlight) and oxygen where it will weaken the influence of the main bonding polymers. Additive used is Carbon Black (soot). These additives absorb a high percentage of ultraviolet radiation. The trick is to add antioxidant polymers. The amount of color variation is needed in the plastic additives required Colorant (dye). This material is organic (Dyes) and inorganic (pigments). Selection of colorant depends on temperature and light in which the pigments dispersed in the polymer. Another additive is heat resistant to the flame retardants. These additives reduce the Flammability of these polymers. When the high temperature most polymers start to burn, burning Traffic depends on the composition of each polymer. Examples of these additives is Compound Chlorine, bromine and Phosphorus. Lubricants can be added to polymers to reduce friction during the manufacturing process. Other uses is to avoid the product sticking to the mold. Can also be a deterrent to the mutual attachment of polymers such as polymer-polymer thin film layer. (bid / multiple sources)

Labels

2d (1) 3D (1) ABG (1) agen JNE (1) almari (1) Alufoil (1) Aluminum Foil (1) anilox roll (1) apartemen (1) Atom (1) autocad (1) backdrop logo (1) bagian dalam (1) bangunan (1) batu alam (1) berkualitas (1) bermutu (1) berpengalaman (1) bertingkat (1) birdview (1) black and white (1) botol plastik (1) cafe (1) classic (1) coklat (1) cold rolled sheet (1) Computer To Plate (1) Consumer Understanding (1) control movement (1) counter (1) CTP (1) denah berwarna (1) denah kantor (1) desain (1) desain cuci mobil (1) desain kamar (1) desain produk (1) design (1) Design and Function (1) design meja (1) Design restaurant (1) design rumah (1) di daerah (1) dinding bata (1) dining (1) Duromer (1) Electrons (1) etnik (1) factors (1) flexo packaging (1) flexo printing (1) food (1) furniture (1) gallus (1) gambar (1) gaya modern (1) gloss (1) grc kotak (1) Halftone (1) hanya 550 ribu (1) harga murah (1) hasil cepat (1) hotel (1) industrial (1) injection (1) Injection Mold (1) ink (1) inovatif (1) install (1) interior (1) interior rumah (1) jasa gambar rumah (1) jasa 3d (1) jasa arsitek (1) jasa desain (1) jasa desain 3d (1) jasa design (1) jasa designer (1) jasa gambar (1) kamar tidur (1) kamar tidur anak (1) kampus (1) karaoke (1) kawasan (1) kawasan industri (1) kemasan (1) kerja di rumah (1) kitchen set (1) kontemporer (1) kosan (1) kost (1) krem (1) laci (1) lamination (1) lithography (1) living room (1) livingroom (1) lounge (1) Luscher MultiDX (1) masterplan (1) matt (1) meja kerja (1) metalworking (1) mewah (1) minimalis (1) minimalist (1) modern (1) mold (1) molding (1) Monomer (1) murah (1) murah. (1) Neutron (1) nuansa remaja (1) offset (1) online design (1) open ceiling (1) outdoor (1) overprint (1) pabrik (1) pantai (1) pencahayaan (1) perumahan (1) pesan desain (1) pesan desain toko (1) plug (1) Polimer (1) Polyaddition (1) Polycondensation (1) Polymerization (1) Polystyrene (1) printing ink (1) Product Creation (1) product function (1) produk katalog (1) Protons (1) Raster Image Processor (1) register (1) rendering (1) resepsionis (1) responsibility (1) resto industrial (1) RIP (1) Rotary (1) ruang kantor (1) ruang keluarga (1) ruang kerja (1) ruang tamu (1) ruang tunggu (1) ruko (1) rumah (1) rumah hook (1) rumah susun (1) rumah tropis (1) scandinavian (1) screen printing (1) sederhana (1) sempoa (1) setup (1) simple sederhana (1) specifications (1) spring (1) steel (1) Struktur Plastik (1) suspension (1) sweet home (1) taman (1) tampak (1) tampak rumah (1) Technological Change (1) terbaru (1) termurah (1) toko aksesoris (1) toko asesoris (1) trapping (1) two cavity (1) unscrewing (1) use (1) uv varnish (1) via online (1) website (1)