Container Design Extrusion Blow Molding

Performance Objective: Use design details that improve drop impact performance Radii: Long and Generous, especially around the base, to allow flash pinch terminations to be located up on container sidewall chime or within the base pushup Base Engravings: Shallow, with Smooth, Rounded Edges Base Shape and Pushup: Rounded and Shallow Footprint: Wide and Rounded with smooth transitions to base and sidewall Panels: wide sidewall panels with long radii Radii: long and generous everywhere, especially at the base to allow flash pinch terminations to be located up on container sidewall chime or within the base pushup Base Engravings: shallow with smooth rounded edges Base Shape and Pushup: Rounded and shallow Footprint: Wide and rounded with smooth transitions to base and sidewall Panels: Wide sidewall panels with long transition radii 

EASTMAN
Extrusion Blow Molding Presentation

Splines and serrations

Splines and serrations are repetitive features comparable to screw threads. Similarly, it is not necessary to give all the details of the splines or serrations, the symbology does it for you. The convention is that one line represents the crests of the serrations or splines and the other the roots. This is shown in the hypothetical drawing in Figure 3.17 where there is a spline at the right-hand end of the gear drive shaft. A note would give details of the spline. The standard ISO 6413" 1988 gives details of the conventions for splines.
Engineering Drawing for Manufacture
by Brian Griffiths
Publisher: Elsevier Science & Technology Books

Gate INJECTION MOLDING


Gate is a crack or hole is relatively very small, is the entrance of the plastic material is injected into the cavity in the cavity. After passing through the gate, the material will flow cavity fill to the brim. Material flow from the gate until the cavity is fully charged, will travel a certain distance depending on the position of gate placement. Distance is called the flow path. Gate placement. Placement of gate position becomes very important, so the above tiadak defects occur or at least reduced to a minimum. Below is shown the possibility of defects arising in connection with the placement of the gate. Placement on gbr.3.11a gate, causing the flow path length so that it requires high injection tekenan,. Besides, there is the possibility of trapped air c section corner, where the product will be perforated at the venue. For large-sized products will experience deformation, for example, oval, etc.. The placement of the gate like gbr.3.11b, is a solution that is relatively the most good, although the appearance of the product will be disturbed by the existence of small cuts ex-gate. Placement on gbr.3.12a gate, the direction of flow after passing through the gate will be split into two, where each end aliarn will meet at 0. on a great product, the temperature of the flow at both ends meet has been greatly decreased, whereby the material at the end of the flow close to freezing. In that case, the meeting (weling) from either end did not produce a strong bond, so that products in this section will be brittle or crack easily. This meeting is usually a line, and called the welding line. Fig 3.12b, an improvement of fig. 3.12a. Gbr.3.12c shows a modification to the product, namely a place opposite the gate, given the bag. End of the flow temperature is very down is inserted into the bag, so that the materials meet each other and are linked material flow behind the tip, which still has a better temperature. Gbr.3.12d is the best solution which will meet the end of the flow of material that is still quite fresh. Gate placement as gbr.3.13a, will result in what is called jetting. Spray stream grazed the wall cavity, where there will be a thin section of material that attach and freeze first. As a result of this jetting, the product will look scaly. At a lower injection rate, as a result of jetting can be a bumpy batikan visible on the walls of the product. Placement on gbr.3.13b gate, the product will be bent, can gbr.3.13c dipertimbangakan. From the few examples of the above in mind, that wherever the gate is placed, will always give defect, both in terms of its appearance which seems former gate, other aspects such as product pad crooked, etc.. Preformance this regard mold designer must understand about product requirements, whether in terms of appearance or the importance of prioritizing the functional aspect, ie the product is not crooked, not brittle, etc., are terms of appearance is sometimes overlooked origin bias is not too bad. The purpose of the pen-desig's mold, is that mold can print product made to specification in effectif and efficiently.

Technology-Push Products

In developing technology-push products, the firm begins with a new proprietary technology and looks for an appropriate market in which to apply this technology (that is, the technology "pushes" development). Gore-Tex, an expanded Teflon sheet manufactured by W L. Gore Associates, is a striking example of technology push. The company has developed dozens of products incorporating Gore-Tex, including artificial veins for vascular surgery, insulation for high-performance electric cables, fabric for outerwear, dental floss, and liners for bagpipe bags. Many successful technology-push products involve basic materials or basic process technologies. This may be because basic materials and processes are deployed in thousands of applications, and there is therefore a high likelihood that new and unusual characteristics of materials and processes can be matched with an appropriate application. The generic product development process can be used with minor modifications for technology-push products. The technology-push process begins with the planning phase, in which the given technology is matched with a market opportunity. Once this matching has occurred, the remainder of the generic development process can be followed. The team includes an assumption in the mission statement that the particular technology will be embodied in the product concepts considered by the team. Although many extremely successful products have arisen from technology-push development, this approach can be perilous. The product is unlikely to succeed unless (1) the assumed technology offers a clear competitive advantage in meeting customer needs, and (2) suitable alternative technologies are unavailable or very difficult for competitors to utilize. Project risk can possibly be minimized by simultaneously considering the merit of a broader set of concepts which do not necessarily incorporate the new technology. In this way the team verifies that the product concept embodying the new technology is superior to the alternatives. 
Development Processes and Organizations

References and Bibliography
Many current resources are available on the Internet via
www.ulrich-eppinger.net
Stage-gate product development processes have been dominant in manufacturing firms
for the past 30 years. Cooper describes the modem stage-gate process and many of its
enabling practices.
Cooper, Robert G., Winning at New Products: Accelerating the Process from Idea to
Launch, third edition, Perseus Books, Cambridge, MA, 2001.
 

Labels

2d (1) 3D (1) ABG (1) agen JNE (1) almari (1) Alufoil (1) Aluminum Foil (1) anilox roll (1) apartemen (1) Atom (1) autocad (1) backdrop logo (1) bagian dalam (1) bangunan (1) batu alam (1) berkualitas (1) bermutu (1) berpengalaman (1) bertingkat (1) birdview (1) black and white (1) botol plastik (1) cafe (1) classic (1) coklat (1) cold rolled sheet (1) Computer To Plate (1) Consumer Understanding (1) control movement (1) counter (1) CTP (1) denah berwarna (1) denah kantor (1) desain (1) desain cuci mobil (1) desain kamar (1) desain produk (1) design (1) Design and Function (1) design meja (1) Design restaurant (1) design rumah (1) di daerah (1) dinding bata (1) dining (1) Duromer (1) Electrons (1) etnik (1) factors (1) flexo packaging (1) flexo printing (1) food (1) furniture (1) gallus (1) gambar (1) gaya modern (1) gloss (1) grc kotak (1) Halftone (1) hanya 550 ribu (1) harga murah (1) hasil cepat (1) hotel (1) industrial (1) injection (1) Injection Mold (1) ink (1) inovatif (1) install (1) interior (1) interior rumah (1) jasa gambar rumah (1) jasa 3d (1) jasa arsitek (1) jasa desain (1) jasa desain 3d (1) jasa design (1) jasa designer (1) jasa gambar (1) kamar tidur (1) kamar tidur anak (1) kampus (1) karaoke (1) kawasan (1) kawasan industri (1) kemasan (1) kerja di rumah (1) kitchen set (1) kontemporer (1) kosan (1) kost (1) krem (1) laci (1) lamination (1) lithography (1) living room (1) livingroom (1) lounge (1) Luscher MultiDX (1) masterplan (1) matt (1) meja kerja (1) metalworking (1) mewah (1) minimalis (1) minimalist (1) modern (1) mold (1) molding (1) Monomer (1) murah (1) murah. (1) Neutron (1) nuansa remaja (1) offset (1) online design (1) open ceiling (1) outdoor (1) overprint (1) pabrik (1) pantai (1) pencahayaan (1) perumahan (1) pesan desain (1) pesan desain toko (1) plug (1) Polimer (1) Polyaddition (1) Polycondensation (1) Polymerization (1) Polystyrene (1) printing ink (1) Product Creation (1) product function (1) produk katalog (1) Protons (1) Raster Image Processor (1) register (1) rendering (1) resepsionis (1) responsibility (1) resto industrial (1) RIP (1) Rotary (1) ruang kantor (1) ruang keluarga (1) ruang kerja (1) ruang tamu (1) ruang tunggu (1) ruko (1) rumah (1) rumah hook (1) rumah susun (1) rumah tropis (1) scandinavian (1) screen printing (1) sederhana (1) sempoa (1) setup (1) simple sederhana (1) specifications (1) spring (1) steel (1) Struktur Plastik (1) suspension (1) sweet home (1) taman (1) tampak (1) tampak rumah (1) Technological Change (1) terbaru (1) termurah (1) toko aksesoris (1) toko asesoris (1) trapping (1) two cavity (1) unscrewing (1) use (1) uv varnish (1) via online (1) website (1)