welding

Definitions of welding according to DIN (Deutsche Industrie Normen) is a metallurgical bond at the junction of metals or metal alloys are carried out in a melted or liquid state. In other words, welding is the local connection of some metal rod using heat energy. In this connection the process is sometimes accompanied by pressure and additional material (filler material)
Simple welding technique has been discovered within the period between 4000 to 3000 BC. Once the electrical energy used with ease, advanced welding technology with the rapidly that it becomes something that advanced switching techniques. Up to now been used more than 40 types of welding.
In the preliminary stages of development of welding technology, welding is usually only used on the connections of the repair is less important. But after going through a lot of experience and practice and a long time, so now the use of welding processes and the use of construction-konsturksi welding is common in all countries in the world.


The realization of the standards of welding techniques will help broaden the scope of the use of welded joints and increases the size of building construction that can be welded. With the progress made to date, welding technology plays an important role in modern industrial society.
Classification of welding
Judging from the heat source. Welding can be distinguished three:
• Mechanics
• Electricity
• Chemical
Meanwhile, according to the way of welding, can be divided into two major parts:
• Welding pressure (Pressure Welding)
• Welding Liquid






  • Read more........
  • STRESSES, STRAINS, STRESS INTENSITY

    Fundamental Definitions
    Static Stresses
    TOTAL STRESS on a section mn through a loaded body is the resultant force S exerted by one part of the body on the other part in order to maintain in equilibrium the external loads acting on the part. Thus, in Figs. 1, 2, and 3 the total stress on section mn due to the external load P is S. The units in which it is expressed are those of load, that is, pounds, tons, etc. 

    UNIT STRESS, more commonly called stress , is the total stress per unit of area at section mn. In general it varies from point to point over the section. Its value at any point of a section is the total stress on an elementary part of the area, including the point divided by the elementary total stress on an elementary part of the area, including the point divided by the elementary area. If in Figs. 1, 2, and 3 the loaded bodies are one unit thick and four units wide, then when the total stress S is uniformly distributed over the area, P/A P/4. Unit stresses are expressed in pounds per square inch, tons per square foot, etc.

    TENSILE STRESS OR TENSION is the internal total stress S exerted by the material fibers to resist the action of an external force P (Fig. 1), tending to separate the material into two parts along the line mn. For equilibrium conditions to exist, the tensile stress at any cross section will be equal and opposite in direction to the external force P. If the internal total stress S is distributed uniformly over the area, the stress can be considered as unit tensile stress S/A.

    COMPRESSIVE STRESS OR COMPRESSION is the internal total stress S exerted by the fibers to resist the action of an external force P (Fig. 2) tending to decrease the length of the material. For equilibrium conditions to exist, the compressive stress at any cross section will be equal and opposite in direction to the external force P. If the internal total stress S is distributed uniformly over the area, the unit compressive stress S/A.

    SHEAR STRESS is the internal total stress S exerted by the material fibers along the plane mn (Fig. 3) to resist the action of the external forces, tending to slide the adjacent parts in opposite directions. For equilibrium conditions to exist, the shear stress at any cross section will be equal and opposite in direction to the external force P. If the internal total stress S is uniformly distributed over the area, the unit shear stress S/A.

    NORMAL STRESS is the component of the resultant stress that acts normal to the area considered
    (Fig. 4).
    AXIAL STRESS is a special case of normal stress and may be either tensile or compressive.
    It is the stress existing in a straight homogeneous bar when the resultant of the applied
    loads coincides with the axis of the bar.
    SIMPLE STRESS exists when tension, compression, or shear is considered to operate singly
    on a body.
    TOTAL STRAIN on a loaded body is the total elongation produced by the influence of an
    external load. Thus, in Fig. 4, the total strain is equal to . It is expressed in units of
    length, that is, inches, feet, etc.
    UNIT STRAIN, or deformation per unit length, is the total amount of deformation divided by
    the original length of the body before the load causing the strain was applied. Thus, if
    the total elongation is in an original gage length l, the unit strain e / l. Unit strains
    are expressed in inches per inch and feet per foot.
    TENSILE STRAIN is the strain produced in a specimen by tensile stresses, which in turn are
    caused by external forces.
    COMPRESSIVE STRAIN is the strain produced in a bar by compressive stresses, which in turn
    are caused by external forces.
    SHEAR STRAIN is a strain produced in a bar by the external shearing forces.
    POISSON’S RATIO is the ratio of lateral unit strain to longitudinal unit strain under the
    conditions of uniform and uniaxial longitudinal stress within the proportional limit. It
    serves as a measure of lateral stiffness. Average values of Poisson’s ratio for the usual
    materials of construction are:
    Material Steel Wrought iron Cast iron Brass Concrete
    Poisson’s ratio 0.300 0.280 0.270 0.340 0.100
    ELASTICITY is that property of a material that enables it to deform or undergo strain and
    return to its original shape upon the removal of the load.
    HOOKE’S LAW states that within certain limits (not to exceed the proportional limit) the
    elongation of a bar produced by an external force is proportional to the tensile stress
    developed. Hooke’s law gives the simplest relation between stress and strain.







    Franklin E. Fisher
    Professor Emeritus
    Mechanical Engineering Department
    Loyola Marymount University
    Los Angeles, California
    and
    Raytheon Company
    El Segundo, California


  • Read more........
  • Compression Molding

    Begins this process by measuring the amount of thermosetting plastic resin required to be placed in the mold cavity. Then the mold is heated and compressed so That the will of liquid resin fills the mold cavity and having a chemical hardening process so That its shape in accordance with the mold.
    Generally this process is Used for phenolic resins, alkyd resins, aldehyde resins, and urea. Resins are Used to form powder, granular, flakes, rope, and rods.
    Duty cycle of this process is Quite long, about 30-20 minutes. Mold temperature must be maintained Throughout the process and the temperature range of 250-400 F depending on the type of material.

    Generally, molds are made ​​of tool steel and in polishing so very good surface finishing.
    Products Produced automotive electrical systems, plastic gear, plastic panels, etc.





  • Read more........
  • Range of Motion and Strength ( Physical Ergonomics )

    A number of measures are required to describe the capacity of an individual (or population) to achieve task performance (e.g., reach, lift, pull). Joint range-of-motion (ROM, also called mobility or flexibility) and joint (or muscle) strength begin to describe capacity and are especially relevant for tasks performed briefly or infrequently. Additional information will be required for highly demanding, prolonged, or frequent tasks, as well as additional types of measures (e.g., fatigue and environmental stress as described below).

    Range of Motion
    Joint ROM refers to the limits of joint motion and is represented as rotations about a given joint or of body segments (e.g., torso flexion). Two different forms of ROM are commonly measured. The first, passive (or assisted), involves external sources of force or moment to achieve joint motion. Examples include the use of gravity during a squat, to assess knee flexion, or forces /moments applied by an experimenter or device. The second, active ROM, requires muscle contraction to achieve joint motion and is associated with narrower motion limits than passive. In practice, the relevant type of ROM is determined by task requirements.

    Measuring ROM from individuals is possible using a variety of equipment, from lowcost goniometers (for measuring included angles) to high-cost and sophisticated marker tracking systems. More often, population ROM data are obtained from a number of accessible sources (often in conjunction with anthropometric data). A number of factors can be expected to have an influence on ROM. Although ROM decreases with age, the changes are usually minimal in healthy individuals until the end of typical working life (i.e., 65). Women generally have higher ROM ranges, although gender differences are typically 10%. Little association has been found between anthropometry and ROM, although ROM does decrease with obesity. In simple cases, such as those involving one joint, application of ROM data is straightforward and follows similar methods described in anthropometry (e.g., using percentiles). When multiple joints are involved, it is common to use human modeling software to assess the potential limitations due to ROM.

    Maury A. Nussbaum
    Industrial and Systems Engineering
    Virginia Polytechnic Institute and State University
    Blacksburg, Virginia
    Jaap H. van Diee¨n
    Faculty of Human Movement Sciences
    Vrije Universiteit
    Amsterdam, The Netherlands


  • Read more........
  •