Drawing Number

The drawing number is used for part identification and to ease storage and retrieval of the drawing and the produced parts. While there is no set way to assign part numbers, common systems are nonsignificant, significant, or some combination of the two previous systems.
Nonsignificant numbering systems are most preferred because no prior knowledge of significance is required.
Significant numbering systems could be used for commonly purchased items like fasteners. For example, the part number for a washer could include the inside diameter, outside diameters, thickness, material, and plating.
A combination of nonsignificant and significant numbering systems may use sections of the numbers in a hierarchical manner. For example, the last three digits could be the number assigned to the part (001, 002, 003, etc.). This would be nonsignificant. The remaining numbers could be significant: two numbers could be the model variation, the next two numbers could be the model number, and the next two could be the series number while the last two could be the project number. Many other possibilities exist.
Dimensioning and Tolerancing
Handbook
Paul J. Drake, Jr.
McGraw-Hill
New York San Francisco Washington , D.C. Auckland Bogata
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore
Sydney Tokyo Toronto


  • Read more........
  • DEFINING PLASTIC PART REQUIREMENTS -2

    Weather Resistance Temperature, moisture, and UV sun exposure affect plastic parts’ properties and appearance. The end-use of a product determines the type of weather resistance required. For instance, external automotive parts such as mirror housings must withstand continuous outdoor exposure and perform in the full range of weather conditions. Additionally, heat gain from sun on dark surfaces may raise the upper temperature requirement considerably higher than maximum expected temperatures. Conversely, your requirements may be less severe if your part is exposed to weather elements only occasionally. For example, outdoor Christmas decorations and other seasonal products may only have to satisfy the requirements for their specific, limited exposure. Radiation A variety of artificial sources — such as fluorescent lights, high-intensity discharge lamps, and gamma sterilization units — emit radiation that can yellow and/or degrade many plastics. If your part will be exposed to a radiation source, consider painting it, or specifying a UV-stabilized resin. Appearance Aesthetic requirements can entail many material and part-design issues. For example, a need for transparency greatly reduces the number of potential plastics, especially if the part needs high clarity. Color may also play an important role. Plastics must often match the color of other materials used in parts of an assembly. Some applications require the plastic part to weather at the same rate as other materials in an assembly. Engineering Polymers Part and Mold Design THERMOPLASTICS A Design Guide Bayer Corporation • 100 Bayer Road • Pittsburgh http://www.bayer.com/polymers-usa

    Oblique projection

    In oblique projection, the object is aligned such that one face (the front face) is parallel to the picture plane. The projection lines are still parallel but they are not perpendicular to the picture plane.
    This produces a view of the object that is 3D. The front face is a true view (see Figure 2.7). It has the advantage that features of the front face can be drawn exactly as they are, with no distortion. The receding faces can be drawn at any angle that is convenient for illustrating the shape of the object and its features. The front face will be a true view, and it is best to make this one the most complicated of the faces. This makes life easier! Most oblique projections are drawn at an angle of 45 ~ and at this angle the foreshortening is 50%. This is called a Cabinet projection. This is because of its use in the furniture industry. If the 45 ~ angle is used and there is no foreshortening it is called a Cavalier projection. The problem with Cavalier projection is that, because there is no foreshortening, it looks peculiar and distorted. Thus, Cabinet projection is the preferred method for constructing an oblique projection.
    An oblique drawing of the bearing bracket in Cabinet projection is shown in Figure 2.8. For convenience, the front view with circles was chosen as the true front view. This means that the circles are true circles and therefore easy to draw. The method of construction for oblique projection is similar to the method described above for isometric projection except that the angles are not 30 ~ but 45 ~ .
    Enclosing rectangles are again used and transposed onto the 45 ~ oblique planes using 50% foreshortening.


    Engineering Drawing for Manufacture
    by Brian Griffiths
    Publisher: Elsevier Science & Technology Books



  • Read more........
  • Critical Role of Computers in Modern Manufacturing

    A number of steps are involved in manufacturing a part from its conceptualization to production. They include product design, process planning, production system design, and process control. Computers are used extensively in all these stages to make the entire process easier and faster. Potential benefits of using computers in manufacturing include reduced costs and lead times in all engineering design stages, improved quality and accuracy, minimization of errors and their duplication, more efficient analysis tool, and accurate control and monitoring of the machines/processes, etc. Some of the applications of computers in manufacturing are shown in Figure 1.5. In computeraided design (CAD), computers are used in the design and analysis of the products and processes. They play a critical role in reducing lead time and cost at the design stages of the products/process. Also, computers may be utilized to plan, manage, and control the operations of a manufacturing system: computer-aided manufacturing (CAM) (Bedworth, Handerson, and Wolfe, 1991). In CAM, computers are either used directly to control and monitor the machines/processes (in real-time) or used off-line to support manufacturing operations such as computer-aided process planning (CAPP) or planning of required materials. At higher levels, computers are utilized in support of management. They play a critical role in all stages of decision making and control of financial operations by processing and analyzing data and reporting the results (management information systems, MIS) (Hollingam, 1987). Computers facilitate integration of CAD, CAM, and MIS (computer-integrated manufacturing, CIM) (Vajpayee, 1995) (see Figure 1.5). They provide an effective communication interface among engineers, design, management, production workers, and project groups to improve efficiency and productivity of the entire system. THE MECHANICAL SYSTEMS DESIGN HANDBOOK Modeling, Measurement, and Control OSITA D. I. NWOKAH YILDIRIM HURMUZLU Southern Methodist University Dallas, Texas CRC PRESS Boca Raton London New York Washington, D.C.