The most essential design activity, therefore, is the production of a final description of the artefact. This has to be in a form that is understandable to those who will make the artefact. For this reason, the most widely-used form of communication is the drawing. For a simple artefact, such as a door-handle, one drawing would probably be enough, but for a larger more complicated artefact such as a whole building the number of drawings may well run into hundreds, and for the most complex artefacts, such as chemical process plants, aeroplanes or major bridges, then thousands of drawings may be necessary.
These drawings will range from rather general descriptions (such as plans, elevations and general arrangement drawings) that give an 'overview' of the artefact, to the most specific (such as sections and details) that give precise instructions on how the artefact is to be made. Because they have to communicate precise instructions, with minimal likelihood of misunderstanding, all the drawings are themselves subject to agreed rules, codes and conventions.
These codes cover aspects such as how to lay out on one drawing the different views of an artefact relative to each other, how to indicate different kinds of material, and how to specify dimensions. Learning to read and to make these drawings is an important part of design education.
The drawings will often contain annotations of additional information. Dimensions are one such kind of annotation. Written instructions may also be added to the drawings, such as notes on the materials to be used (as in Figure 1).
Other kinds of specifications as well as drawings may also be required. For example, the designer is often required to produce lists of all the separate components and parts that will make up the complete artefact, and an accurate count of the numbers of each component to be used. Written specifications of the standards of workmanship or quality of manufacture may also be necessary.
Sometimes, an artefact is so complex, or so unusual, that the designer makes a complete three-dimensional mock-up or prototype version in order to communicate the design. However, there is no doubt that drawings are the most useful form of communication of the description of an artefact that has yet to be made. Drawings are very good at conveying an understanding of what the final artefact has to be like, and that understanding is essential to the person who has to make the artefact.
Nowadays it is not always a person who makes the artefact; some artefacts are made by machines that have no direct human operator. These machines might be fairly sophisticated robots, or just simpler numerically-controlled tools such as lathes or milling machines. In these cases, therefore, the final specification of a design prior to manufacture might not be in the form of drawings but in theform of a string of digits stored on a disk, or in computer software that controls the machine's actions. It is therefore possible to have a design process in which no final communication drawings are made, but the ultimate purpose of the design process remains the communication of proposals for a new artefact.
Engineering Design Methods
Strategies for Product Design
THIRD EDITION
Nigel Cross
The Open University, Mi/ton Keynes, UK
JOHN WILEY & SONS, LTD
Chichester- New York. Weinheim • Brisbane. Singapore. Toronto
0 comments:
Post a Comment