Magnesium

The density of magnesium is about 1800 kg/m3 (0.065 lb/in3), which is two-thirds that of aluminum and one-fourth that of steel. Since it is the lightest of all commercial metals, its greatest use is in the aircraft and automotive industries, but other uses are now being found for it. Although the magnesium alloys do not have great strength, because of their light weight the strength-weight ratio compares favorably with the stronger aluminum and steel alloys. Even so, magnesium alloys find their greatest use in applications where strength is not an important consideration. Magnesium will not withstand elevated temperatures; the yield point is definitely reduced when the temperature is raised to that of boiling water. Magnesium and its alloys have a modulus of elasticity of 45 GPa (6.5 Mpsi) in tension and in compression, although some alloys are not as strong in compression as in tension. Curiously enough, cold working reduces the modulus of elasticity. A range of cast magnesium alloys are also available.


  • READ MORE.......




  • Mechanical Engineering
    McGraw−Hill Primis
    ISBN: 0−390−76487−6
    Text:
    Shigley’s Mechanical Engineering Design,
    Eighth Edition
    Budynas−Nisbett




    Cold-Working Processes

    By cold working is meant the forming of the metal while at a low temperature (usually room temperature). In contrast to parts produced by hot working, cold-worked parts have a bright new finish, are more accurate, and require less machining.
    Cold-finished bars and shafts are produced by rolling, drawing, turning, grinding, and polishing. Of these methods, by far the largest percentage of products are made by the cold-rolling and cold-drawing processes. Cold rolling is now used mostly for the
    production of wide flats and sheets. Practically all cold-finished bars are made by cold drawing but even so are sometimes mistakenly called “cold-rolled bars.” In the drawing process, the hot-rolled bars are first cleaned of scale and then drawn by pulling them through a die that reduces the size about 1 32 to 1 16 in. This process does not remove material from the bar but reduces, or “draws” down, the size. Many different shapes of  hot-rolled bars may be used for cold drawing.
    Cold rolling and cold drawing have the same effect upon the mechanical properties. The cold-working process does not change the grain size but merely distorts it. Cold working results in a large increase in yield strength, an increase in ultimate strength and hardness, and a decrease in ductility. In Fig. 2–12 the properties of a colddrawn bar are compared with those of a hot-rolled bar of the same material.
    Heading is a cold-working process in which the metal is gathered, or upset. This operation is commonly used to make screw and rivet heads and is capable of producing a wide variety of shapes. Roll threading is the process of rolling threads by squeezing and rolling a blank between two serrated dies. Spinning is the operation of working sheet material around a rotating form into a circular shape. Stamping is the term used to
    describe punch-press operations such as blanking, coining, forming, and shallow drawing.


  • READ MORE.......



  • Mechanical Engineering
    McGraw−Hill Primis
    ISBN: 0−390−76487−6
    Text:
    Shigley’s Mechanical Engineering Design,
    Eighth Edition
    Budynas−Nisbett


    for STEP BY STEP GUIDE illustrator simple tutorial please visit.........
    www.illustratorsimpletutorial.blogspot.com

    ---or---

  • www.illustrator-simple-tutorial.com



  • Shell Molding

    The shell-molding process employs a heated metal pattern, usually made of cast iron,
    aluminum, or brass, which is placed in a shell-molding machine containing a mixture
    of dry sand and thermosetting resin. The hot pattern melts the plastic, which, together with the sand, forms a shell about 5 to 10 mm thick around the pattern. The shell is then baked at from 400 to 700°F for a short time while still on the pattern. It is then stripped from the pattern and placed in storage for use in casting.
    In the next step the shells are assembled by clamping, bolting, or pasting; they are placed in a backup material, such as steel shot; and the molten metal is poured into the cavity. The thin shell permits the heat to be conducted away so that solidification takes place rapidly. As solidification takes place, the plastic bond is burned and the mold collapses.
    The permeability of the backup material allows the gases to escape and the casting to air-cool. All this aids in obtaining a fine-grain, stress-free casting. Shell-mold castings feature a smooth surface, a draft that is quite small, and close tolerances. In general, the rules governing sand casting also apply to shell-mold casting.




  • READ MORE.......




  • Mechanical Engineering
    McGraw−Hill Primis
    ISBN: 0−390−76487−6
    Text:
    Shigley’s Mechanical Engineering Design,
    Eighth Edition
    Budynas−Nisbett


    for STEP BY STEP GUIDE autocad simple tutorial please visit.........
    www.autocadsimpletutorial.blogspot.com

    ---or---

  • www.autocad-simple-tutorial.com


  • Sand Casting

    Sand casting is a basic low-cost process, and it lends itself to economical production in large quantities with practically no limit to the size, shape, or complexity of the part produced.
    In sand casting, the casting is made by pouring molten metal into sand molds. A
    pattern, constructed of metal or wood, is used to form the cavity into which the molten metal is poured. Recesses or holes in the casting are produced by sand cores introduced into the mold. The designer should make an effort to visualize the pattern and casting in the mold. In this way the problems of core setting, pattern removal, draft, and solidification can be studied. Castings to be used as test bars of cast iron are cast separately and properties may vary.
    Steel castings are the most difficult of all to produce, because steel has the highest melting temperature of all materials normally used for casting. This high temperature aggravates all casting problems.
    The following rules will be found quite useful in the design of any sand casting:
    1 All sections should be designed with a uniform thickness.
    2 The casting should be designed so as to produce a gradual change from section to section where this is necessary.
    3 Adjoining sections should be designed with generous fillets or radii.
    4 A complicated part should be designed as two or more simple castings to be assembled by fasteners or by welding.
    Steel, gray iron, brass, bronze, and aluminum are most often used in castings. The minimum wall thickness for any of these materials is about 5 mm, though with particular care, thinner sections can be obtained with some materials.



  • READ MORE.......



  • Mechanical Engineering
    McGraw−Hill Primis
    ISBN: 0−390−76487−6
    Text:
    Shigley’s Mechanical Engineering Design,
    Eighth Edition
    Budynas−Nisbett


    for STEP BY STEP GUIDE solidwork simple tutorial please visit.........
    www.solidworksimpletutorial.blogspot.com

    ---or---

  • www.solidwork-simple-tutorial.com



  • Labels

    2d (1) 3D (1) ABG (1) agen JNE (1) almari (1) Alufoil (1) Aluminum Foil (1) anilox roll (1) apartemen (1) Atom (1) autocad (1) backdrop logo (1) bagian dalam (1) bangunan (1) batu alam (1) berkualitas (1) bermutu (1) berpengalaman (1) bertingkat (1) birdview (1) black and white (1) botol plastik (1) cafe (1) classic (1) coklat (1) cold rolled sheet (1) Computer To Plate (1) Consumer Understanding (1) control movement (1) counter (1) CTP (1) denah berwarna (1) denah kantor (1) desain (1) desain cuci mobil (1) desain kamar (1) desain produk (1) design (1) Design and Function (1) design meja (1) Design restaurant (1) design rumah (1) di daerah (1) dinding bata (1) dining (1) Duromer (1) Electrons (1) etnik (1) factors (1) flexo packaging (1) flexo printing (1) food (1) furniture (1) gallus (1) gambar (1) gaya modern (1) gloss (1) grc kotak (1) Halftone (1) hanya 550 ribu (1) harga murah (1) hasil cepat (1) hotel (1) industrial (1) injection (1) Injection Mold (1) ink (1) inovatif (1) install (1) interior (1) interior rumah (1) jasa gambar rumah (1) jasa 3d (1) jasa arsitek (1) jasa desain (1) jasa desain 3d (1) jasa design (1) jasa designer (1) jasa gambar (1) kamar tidur (1) kamar tidur anak (1) kampus (1) karaoke (1) kawasan (1) kawasan industri (1) kemasan (1) kerja di rumah (1) kitchen set (1) kontemporer (1) kosan (1) kost (1) krem (1) laci (1) lamination (1) lithography (1) living room (1) livingroom (1) lounge (1) Luscher MultiDX (1) masterplan (1) matt (1) meja kerja (1) metalworking (1) mewah (1) minimalis (1) minimalist (1) modern (1) mold (1) molding (1) Monomer (1) murah (1) murah. (1) Neutron (1) nuansa remaja (1) offset (1) online design (1) open ceiling (1) outdoor (1) overprint (1) pabrik (1) pantai (1) pencahayaan (1) perumahan (1) pesan desain (1) pesan desain toko (1) plug (1) Polimer (1) Polyaddition (1) Polycondensation (1) Polymerization (1) Polystyrene (1) printing ink (1) Product Creation (1) product function (1) produk katalog (1) Protons (1) Raster Image Processor (1) register (1) rendering (1) resepsionis (1) responsibility (1) resto industrial (1) RIP (1) Rotary (1) ruang kantor (1) ruang keluarga (1) ruang kerja (1) ruang tamu (1) ruang tunggu (1) ruko (1) rumah (1) rumah hook (1) rumah susun (1) rumah tropis (1) scandinavian (1) screen printing (1) sederhana (1) sempoa (1) setup (1) simple sederhana (1) specifications (1) spring (1) steel (1) Struktur Plastik (1) suspension (1) sweet home (1) taman (1) tampak (1) tampak rumah (1) Technological Change (1) terbaru (1) termurah (1) toko aksesoris (1) toko asesoris (1) trapping (1) two cavity (1) unscrewing (1) use (1) uv varnish (1) via online (1) website (1)