Standard Test Method for Water and Sediment in Crude Oil by Centrifuge Method

This standard is issued under the fixed designation D 96; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval. This method has been approved by the sponsoring committees and accepted by the Cooperating Societies in accordance with established procedures. This test method has been adopted for use by government agencies to replace Method 3003 of Federal Test Method Standard No. 791b. Annex A1 is under revision and will be included in subsequent revisions to this standard. 1. Scope 1.1 This test method covers the centrifuge method for determining sediment and water in crude oil during field custody transfers. This test method may not always provide the most accurate results, but it is considered the most practical method for field determination of sediment and water. When a higher degree of accuracy is required, the laboratory procedure described in Test Methods D 4006, D 4377 or D 473 should be used. NOTE 1—Water by distillation and sediment by extraction are considered the most accurate methods of determining sediment and water in crude oils. As such, these methods should be employed to resolve differences in results from variations of this procedure or between this procedure and other methods, or in the case of a dispute between parties. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 2. Referenced Documents 2.1 ASTM Standards: D 235 Specification for Mineral Spirits (Petroleum Spirits) (Hydrocarbon Drycleaning Spirits)2 D 362 Specification for Industrial Grade Toluene2 D 473 Test Method for Sediment in Crude Oils and Fuel Oils by the Extraction Method3 D 846 Specification for Ten-Degree Xylene2 D 1209 Test Method for Color of Clear Liquids (Platinum- Cobalt Scale)2 D 3699 Specification for Kerosine4 D 4006 Test Method for Water in Crude Oil by Distillation4 D 4057 Practice for Manual Sampling of Petroleum and Petroleum Products4 D 4177 Practice for Automatic Sampling of Petroleum and Petroleum Products4 D 4377 Test Method for Water in Crude Oils by Potentiometric Karl Fischer Titration4 E 1 Specification for ASTM Thermometers5 E 542 Practice for Calibration of Volumetric Ware6 2.2 API Standards:7 Manual of Petroleum Measurement Standards Chapter 8, Sampling Petroleum and Petroleum Products Chapter 10, Sediment and Water 3. Summary of Test Method 3.1 Known volumes of crude oil and solvent (water saturated if required) are placed in a centrifuge tube and heated to 60°C 6 3°C (140°F 6 5°F). After centrifugation, the volume of the sediment-and-water layer at the bottom of the tube is read. NOTE 2—It has been observed that for some waxy crude oils, temperatures of 71°C (160°F) or higher may be required to melt the wax crystals completely so that they are not measured as sediment. If temperatures higher than 60°C (140°F) are necessary to eliminate this problem, they may be used with the consent of the parties involved. If water saturation of the solvent is required, it must be done at the same temperature. 4. Significance and Use 4.1 A determination of sediment and water content is required to determine accurately the net volumes of crude oil involved in sales, taxation, exchanges, inventories, and custody transfers. An excessive amount of sediment and water in crud.
---------------------
1 This test method is under the jurisdiction of Committee D-2 on Petroleum
Products and Lubricants and is the direct responsibility of Subcommittee
D02.02.OB on Sediment and Water (Joint ASTM-JP).
Current edition approved March 25, 1988. Published December 1988. Originally
published as D 96 – 63T. Last previous edition D 96 – 73 (1984).e1
2 Annual Book of ASTM Standards, Vol 06.04.
3 Annual Book of ASTM Standards, Vol 05.01.
4 Annual Book of ASTM Standards, Vol 05.02.
5 Annual Book of ASTM Standards, Vol 14.03.
6 Annual Book of ASTM Standards, Vol 14.02.
7 Available from American Petroleum Institute, 1220 L St., Northwest, Washington,
DC 20005.

An American National Standard
British Standard 4385
American Association State
Highway Transportation Standard
AASHTO No. T55

AMERICAN SOCIETY FOR TESTING AND MATERIALS
100 Barr Harbor Dr., West Conshohocken, PA 19428
Reprinted from the Annual Book of ASTM Standards. Copyright ASTM
 

Three dimensional illustrations using isometric and oblique projection

Isometric projection
Figure 6.1 shows three views of a cube in orthographic
projection; the phantom line indicates the original
position of the cube, and the full line indicates the
position after rotation about the diagonal AB. The cube
has been rotated so that the angle of 45° between side
AC1 and diagonal AB now appears to be 30° in the
front elevation, C1 having been rotated to position C.
It can clearly be seen in the end view that to obtain
this result the angle of rotation is greater than 30°.
Also, note that, although DF in the front elevation
appears to be vertical, a cross check with the end
elevation will confirm that the line slopes, and that
point F lies to the rear of point D. However, the front
elevation now shows a three dimensional view, and
when taken in isolation it is known as an isometric
projection.
This type of view is commonly used in pictorial
presentations, for example in car and motor-cycle service
manuals and model kits, where an assembly has been
‘exploded’ to indicate the correct order and position of
the component parts.
It will be noted that, in the isometric cube, line AC1
is drawn as line AC, and the length of the line is reduced.
Figure 6.2 shows an isometric scale which in principle
is obtained from lines at 45° and 30° to a horizontal
axis. The 45° line XY is calibrated in millimetres
commencing from point X, and the dimensions are
projected vertically on to the line XZ. By similar
triangles, all dimensions are reduced by the same
amount, and isometric lengths can be measured from
point X when required. The reduction in length is in
the ratio
isometric length
true length
= cos 45
cos 30
= 0.7071
0.8660
= 0.8165 °°
Now, to reduce the length of each line by the use of an
isometric scale is an interesting academic exercise,
but commercially an isometric projection would be
drawn using the true dimensions and would then be
enlarged or reduced to the size required.
Note that, in the isometric projection, lines AE and
DB are equal in length to line AD; hence an equal
reduction in length takes place along the apparent
vertical and the two axes at 30° to the horizontal. Note
also that the length of the diagonal AB does not change
from orthographic to isometric, but that of diagonal
C1D1 clearly does. When setting out an isometric
projection, therefore, measurements must be made only
along the isometric axes EF, DF, and GF.
Figure 6.3 shows a wedge which has been produced
from a solid cylinder, and dimensions A, B, and C
indicate typical measurements to be taken along the
principal axes when setting out the isometric projection.
Any curve can be produced by plotting a succession of
points in space after taking ordinates from the X, Y,
and Z axes.
Figure 6.4(a) shows a cross-section through an extruded
alloy bar: the views (b), (c), and (d) give alternative
isometric presentations drawn in the three principal
planes of projection. In every case, the lengths of
ordinates OP, OQ, P1, and Q2, etc. are the same, but
are positioned either vertically or inclined at 30° to
the horizontal.
Figure 6.5 shows an approximate method for the
construction of isometric circles in each of the three
major planes. Note the position of the points of
intersection of radii RA and RB.
The construction shown in Fig. 6.5 can be used
partly for producing corner radii. Fig. 6.6 shows a
small block with radiused corners together with
isometric projection which emphasises the construction
to find the centres for the corner radii; this should be
the first part of the drawing to be attempted. The
thickness of the block is obtained from projecting back
these radii a distance equal to the block thickness and
at 30°. Line in those parts of the corners visible behind
the front face, and complete the pictorial view by adding
the connecting straight lines for the outside of the profile.
In the approximate construction shown, a small
inaccuracy occurs along the major axis of the ellipse,
and Fig. 6.7 shows the extent of the error in conjunction
with a plotted circle. In the vast majority of applications
where complete but small circles are used, for example
spindles, pins, parts of nuts, bolts, and fixing holes,
this error is of little importance and can be neglected.

Manual of
Engineering Drawing
Second edition
Colin H Simmons
I.Eng, FIED, Mem ASME.
Engineering Standards Consultant
Member of BS. & ISO Committees dealing with
Technical Product Documentation specifications
Formerly Standards Engineer, Lucas CAV.
Dennis E Maguire
CEng. MIMechE, Mem ASME, R.Eng.Des, MIED
Design Consultant
Formerly Senior Lecturer, Mechanical and
Production Engineering Department, Southall College
of Technology
City & Guilds International Chief Examiner in
Engineering Drawing

  • READ MORE.......
  • Circular & Total Runout

    Geometric Tolerancing Geometric Tolerancing is used to specify the shape of features. Things like: •Straightness •Flatness •Circularity •Cylindricity •Angularity •Profiles •Perpendicularity •Parallelism •Concentricity •And More... Geometric Tolerances are shown on a drawing with a feature control frame. Runout is specified on cylindrical parts. It is measured by placing a gage on the part, and rotating the part through 360 degrees. The total variation is recorded as the runout. • Circular runout is measured at one location. • Total Runout is measured along the entire specified surface. Principles of Engineering Drawing Thayer Machine Shop

    Gear Types

    The most common types of gears are illustrated in Figs. 5.16 to 5.25. Other available types are generally modifications of the basic gears shown. Gear nomenclature and definitions can be found in ANSI/AGMA 1012-F90, Gear Nomenclature, Definitions of Terms with Symbols.1 Spur gears A spur gear has a cylindrical pitch surface and teeth that are parallel to the axis. Spur gears operate on parallel axes (Fig. 5.16). Spur rack A spur rack has a plane pitch surface and straight teeth that are at right angles to the direction of motion (Fig. 5.16). Helical gears A helical gear has a cylindrical pitch surface and teeth that are helical. Parallel helical gears operate on parallel axes. Mating external helical gears on parallel axes have helices of opposite hands. If one of the mating members is an internal gear, the helices are of the same hand (Fig. 5.17). Single-helical gears Gears have teeth of only one hand on each gear (Fig. 5.18). Double-helical gears Gears have both right-hand and left-hand teeth on each gear. The teeth are separated by a gap between the helices (Fig. 5.19).Where there is no gap, they are known as herringbone gears. Wormgearing Includes worms and their mating gears. The axes are usually at right angles (Fig. 5.20). Wormgear (wormwheel) The gear that is the mate to a worm. A wormgear that is completely conjugate to its worm has a line contact and is said to be enveloping. An involute spur gear or helical gear used with a cylindrical worm has point contact only and is said to be nonenveloping (Fig. 5.20). Cylindrical worm A worm that has one or more teeth in the form of screw threads on a cylinder. Enveloping worm (hourglass) A worm that has one or more teeth and increases in diameter from its middle portion toward both ends, conforming to the curvature of the gear (Fig. 5.20). Double-enveloping wormgearing This is comprised of enveloping (hourglass) worms mated with fully enveloping wormgears (Fig. 5.21). Bevel gears These are gears that have conical pitch surfaces and operate on intersecting axes that are usually at right angles (Fig. 5.22). Miter gears These are mating bevel gears with equal numbers of teeth and with axes at right angles (Fig. 5.23). Straight bevel gears These have straight tooth elements which, if extended, would pass through the point of intersection of their axes (Fig. 5.24). Spiral bevel gears These have teeth that are curved and oblique (Fig. 5.24). Hypoid gears Similar in general form to bevel gears, hypoid gears operate on nonintersecting axes (Fig. 5.25). 
    Standard Handbook of Plant Engineering (3rd Edition)

    By: Rosaler, Robert © 2002 McGraw-Hill
    Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

    Design Procedure for Crankshaft





    The following procedure may be adopted for designing a crankshaft. 1. First of all, find the magnitude of the various loads on the crankshaft. 2. Determine the distances between the supports and their position with respect to the loads. 3. For the sake of simplicity and also for safety, the shaft is considered to be supported at the centres of the bearings and all the forces and reactions to be acting at these points. The distances between the supports depend on the length of the bearings, which in turn depend on the diameter of the shaft because of the allowable bearing pressures. 4. The thickness of the cheeks or webs is assumed to be from 0.4 ds to 0.6 ds, where ds is the diameter of the shaft. It may also be taken as 0.22D to 0.32 D, where D is the bore of cylinder in mm. 5. Now calculate the distances between the supports. 6. Assuming the allowable bending and shear stresses, determine the main dimensions of the crankshaft. Notes: 1. The crankshaft must be designed or checked for at least two crank positions. Firstly, when the crankshaft is subjected to maximum bending moment and secondly when the crankshaft is subjected to maximum twisting moment or torque. 2. The additional moment due to weight of flywheel, belt tension and other forces must be considered. 3. It is assumed that the effect of bending moment does not exceed two bearings between which a force is considered. 
    FIRST MULTICOLOUR EDITION

    (S.I. UNITS)

    [A Textbook for the Students of B.E. / B.Tech.,

    U.P.S.C. (Engg. Services); Section ‘B’ of A.M.I.E. (I)]

    A TEXTBOOK OF

    Machine Design

    R.S. KHURMI

    J.K. GUPTA

    What Are Titanium Alloys?



    For purposes of this chapter titanium alloys are those alloys of about 50% or higher titanium that offer exceptional strength-to-density benefits plus corrosion properties comparable to the excellent corrosion resistance of pure titanium. The range of operation is from cryogenic temperatures to around 538–595 C (1000–1100 F). Titanium alloys based on intermetallics such as gamma titanium aluminide (TiAl intermetallic compound which has been designated ) are included in this discussion. These alloys are meant to compete with superalloys at the lower end of superalloy temperature capability, perhaps up to 700 C ( 1300 F). They may offer some mechanical advantages for now but often represent an economic debit. Limited experience is available with the titanium aluminides. Temperature Capability of Titanium Alloys Although the melting point of titanium is in excess of 1660 C (3000 F), commercial alloys operate at substantially lower temperatures. It is not possible to create titanium alloys that operate close to their melting temperatures. Attainable strengths, crystallographic phase transformations, and environmental interaction considerations cause restrictions. Thus, while titanium and its alloys have melting points higher than those of steels, their maximum upper useful temperatures for structural applications generally range from as low as 427 C (800 F) to the region of about 538–595 C (1000–1100 F) dependent on composition. As noted, titanium aluminide alloys show promise for applications at higher temperatures, perhaps up to 700 C ( 1300 F), although at one time they were expected to offer benefits to higher temperatures. Actual application temperatures will vary with individual alloy composition. Since application temperatures are much below the melting points, incipient melting is not a factor in titanium alloy application. 

    SELECTION OF TITANIUM ALLOYS

    FOR DESIGN

    Matthew J. Donachie

    Rensselaer at Hartford

    Hartford, Connecticut

    Mechanical Engineers’ Handbook: Materials and Mechanical Design, Volume 1, Third Edition.

    Edited by Myer Kutz

    by John Wiley & Sons, Inc.


     

    Nuts, bolts, screws and washers

    ISO metric precision hexagon bolts, screws and nuts are covered by BS 3643 and ISO 272. The standard includes washer faced hexagon head bolts and full bearing head bolts. In both cases there is a small radius under the bolthead which would not normally be shown on drawings, due to its size, but is included here for completeness of the text. With an M36 bolt, the radius is only 1.7 mm. Bolts may be chamfered at 45° at the end of the shank, or radiused. The rounded end has a radius of approximately one and one quarter times the shank diameter and can also be used if required to draw the rolled thread end. The washer face under the head is also very thin and for a M36 bolt is only 0.5 mm. Figure 16.1(a) shows the bolt proportions and Table 16.1 the dimensions for bolts in common use. Dimensions of suitable nuts are also given and illustrated in Fig. 16.1(b). Included in Table 16.1 and shown in Fig. 16.1(c) are typical washers to suit the above bolts and nuts and these are covered by BS 4320. Standard washers are available in two different thicknesses, in steel or brass, and are normally plain, but may be chamfered. Table 16.1 gives dimensions of commonly used bolts, nuts and washers so that these can be used easily on assembly drawings. For some dimensions maximum and minimum values appear in the standards and we have taken an average figure rounded up to the nearest 0.5 mm and this will be found satisfactory for normal drawing purposes. Reference should be made to the relevant standards quoted for exact dimensions if required in design and manufacture. 

    Manual of

    Engineering Drawing

    Second edition

    Colin H Simmons

    I.Eng, FIED, Mem ASME.

    Engineering Standards Consultant

    Member of BS. & ISO Committees dealing with

    Technical Product Documentation specifications

    Formerly Standards Engineer, Lucas CAV.

    Dennis E Maguire

    CEng. MIMechE, Mem ASME, R.Eng.Des, MIED

    Design Consultant

    Formerly Senior Lecturer, Mechanical and

    Production Engineering Department, Southall College

    of Technology

    City & Guilds International Chief Examiner in

    Engineering Drawing
     

    Geometric Tolerancing

    Geometric Tolerancing is used to specify the shape of features.
    Things like:
    •Straightness
    •Flatness
    •Circularity
    •Cylindricity
    •Angularity
    •Profiles
    •Perpendicularity
    •Parallelism
    •Concentricity
    •And More...

    Geometric Tolerances are shown on a drawing with a feature control frame.

    The Feature Control Frame
    This feature control frame is read as: “The specified feature must lie perpendicular within a
    tolerance zone of 0.05 diameter at the maximum material condition, with respect to datum
    axis C. In other words, this places a limit on the amount of variation in perpendicularity
    between the feature axis and the datum axis. In a drawing, this feature control frame would
    accompany dimensional tolerances that control the feature size and position.

    Principles of Engineering Drawing
    Thayer Machine Shop


  • Read more........
  • SECTION 3 SURFACE TEXTURE

    3.1 SCOPE OF SECTION This Section provides information on the indication of surface texture on
    mechanical engineeringdrawingsandsimilar applications.For a more complete understandingof surface
    texture, reference should be made to AS 2536.
    3.2 SYMBOLS
    3.2.1 Basic symbol The basic symbol is shown in Figure 3.1. The dimensions of surface texture
    symbols are shown in Figure 3.2. Sloping lines in the symbol are at 60° to the horizontal.
    3.2.2 Modification to basic symbol The following modifications may be made to the basic symbol:
    (a) The symbol to be used where machining is mandatory shall be the basic symbol with a bar
    added, as shown in Figure 3.3.
    This symbol may be used alone to indicate that a surface is to be machined without defining
    either the surface texture or the process to be used.
    (b) The symbol to be used when the removal of material is not permitted shall be the basic symbol
    with a circle added, as shown in Figure 3.4. This symbol may be used alone to indicate that a
    surface is to be left in the state resulting from a preceding manufacturing process.
    3.2.3 Extension of symbols When special surface characteristics are to be indicated (see Clause
    3.4), the symbols shown in Figures 3.1, 3.3 and 3.4 may be extended by adding a line of appropriate
    length to the long leg, as shown in Figure 3.5.

    Australian Standard
    Technical drawing
    Part 201: Mechanical engineering drawing
    Accessed by WOODSIDE ENERGY LTD on 21 Nov 2001



  • Read more........
  • The application of welding symbols to working drawings

    The following notes are meant as a guide to the method
    of applying the more commonly used welding symbols
    relating to the simpler types of welded joints on
    engineering drawings. Where complex joints involve
    multiple welds it is often easier to detail such constructions
    on separate drawing sheets.
    Each type of weld is characterized by a symbol
    given in Table 26.1 Note that the symbol is representative
    of the shape of the weld, or the edge preparation, but
    does not indicate any particular welding process and
    does not specify either the number of runs to be deposited
    or whether or not a root gap or backing material is
    to be used. These details would be provided on a welding
    procedure schedule for the particular job.
    It may be necessary to specify the shape of the weld
    surface on the drawing as flat, convex or concave and
    a supplementary symbol, shown in Table 26.2, is then
    added to the elementary symbol. An example of each
    type of weld surface application is given in Table 26.3.
    A joint may also be made with one type of weld on
    a particular surface and another type of weld on the
    back and in this case elementary symbols representing
    each type of weld used are added together. The last
    example in Table 26.3 shows a single-V butt weld
    with a backing run where both surfaces are required to
    have a flat finish.
    A welding symbol is applied to a drawing by using
    a reference line and an arrow line as shown in Fig.
    26.1. The reference line should be drawn parallel to
    the bottom edge of the drawing sheet and the arrow
    line forms an angle with the reference line. The side of
    the joint nearer the arrow head is known as the ‘arrow
    side’ and the remote side as the ‘other side’.
    The welding symbol should be positioned on the
    reference line as indicated in Table 26.4.
    Sketch (a) shows the symbol for a single-V butt
    weld below the reference line because the external
    surface of the weld is on the arrow side of the joint.
    Sketch (b) shows the same symbol above the
    reference line because the external surface of the weld
    is on the other side of the joint.
    Manual of
    Engineering Drawing
    Second edition
    Colin H Simmons
    I.Eng, FIED, Mem ASME.
    Engineering Standards Consultant
    Member of BS. & ISO Committees dealing with
    Technical Product Documentation specifications
    Formerly Standards Engineer, Lucas CAV.
    Dennis E Maguire
    CEng. MIMechE, Mem ASME, R.Eng.Des, MIED
    Design Consultant
    Formerly Senior Lecturer, Mechanical and
    Production Engineering Department, Southall College
    of Technology
    City & Guilds International Chief Examiner in
    Engineering Drawing

    Elsevier Newnes
    Linacre House, Jordan Hill, Oxford OX2 8DP
    200 Wheeler Road, Burlington MA 01803




  • Read more........
  • EVOLUTION OF A DESIGN

    Most likely you have, right at this moment, at least one machine design project in progress. Maybe you were the originator of the design, but I suspect you inherited this design from others. I further suspect that you have already identified elements of the design you feel could be improved. You might be under pressure from customer service or marketing to respond to some need for change. In responding successfully, either to your own observations for change or to those of others, the design will evolve. Recognizing that the evolutionary design process is decidedly complex, with a seemingly random sequence of steps, the primary purpose of Standard Handbook of Machine Design is to make the information you need as readily accessible and usable as possible. As an example of how a design can evolve, and to provide perspective on how the information in this Handbook has traditionally been used, let me review for you a project I was given in my first job as a mechanical engineer. It involved the positioning of a microwave feed horn for a 30-ft-diameter antenna dish.The original gn (not mine, by the way) called for a technician to climb up onto a platform, some 20 ft off the ground, near the backside of the feed horn.The technician had to loosen a half dozen bolts, rotate the feed horn manually, and then retighten the bolts. This design worked quite well until several systems were sold to a customer providing telecommunications along the Alaskan oil pipeline. Workers were not really safe going out in below 0°F weather,with snow and ice on everything. As a result of their concerns for safety, this customer asked that we provide remote positioning of the feed horn from the nearby control room. The critical design requirement was that the positioning of the feed horn needed to be relatively precise. This meant that our design had to have as little backlash in the drive mechanism as possible. Being a young engineer, I was unaware of the wide variety of different drive systems, in particular their respective properties and capa- bilities. I asked one of the older engineers for some direction. He suggested I use a worm drive since it cannot be back driven, and loaned me his copy of Joseph Shigley’s book, Mechanical Engineering Design. He said that Shigley’s book (a precursor to this Handbook) had been his primary source of information about worm drives, and a wealth of other machine design information. As it turned out, the resulting design worked as required. It not only pleased our Alaskan customer but became a standard on all antenna systems. I did not get a promotion as a result of the success of this new design, nor did I receive a raise. However, I was proud, and, as you can surmise, still am. I credit this successful design evolution to the material on worm drives in Shigley’s book. And there is more to this story. The worm drive gearbox we ultimately purchased contained a plastic drive element. This allowed the backlash to be greater than what could be tolerated in positioning accuracy and did not provide the necessary strength to break the feed horn loose from a covering of ice.The original manufacturer of the gearbox refused to change this drive element to metal for the units we would be buying. If we made the change ourselves, they said, the warranty would be voided. However, after absorbing the wealth of information on worm drives in Shigley’s book, I felt confident that we could make this substitution without endangering the reliability of the unit. Also, because of Joseph Shigley’s reputation in the mechanical engineering community and the extensive list of references he cited, I never felt the need to consult other sources. Another aspect of this story is also important to note. In addition to the information on worm drives, I also used Shigley’s book to find comprehensive design information on the many other machine elements in the new design: gear train geometry, chain drives, couplings, roller bearings, bolted joints, welds, lubrication, corrosion, and the necessary stress and deformation calculations I needed to make. All this information, and much more, was contained in the First Edition of the Standard Handbook of Machine Design, which Joseph Shigley coauthored with Charles Mischke. Now in its Third Edition, this Handbook includes the information machine design engineers have come to trust.We hope you will find this information invaluable as you constantly strive to improve your designs, whether by your own initiatives, or for other reasons.
    Thomas H. Brown, Jr., Ph.D., P.E.
    Faculty Associate
    Institute for Transportation Research and Education
    North Carolina State University
    Raleigh, North Carolina
    Source: STANDARD HANDBOOK OF MACHINE DESIGN
    Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
     

    Injection Forging—Process and Component

    Injection forging is a process in which the work-material retained in an injection chamber is injected into a die-cavity in a form prescribed by the geometry of the exit (Fig. 1). The process is characterized by the combination of axial and radial flows of material to form the required component-form. In the 1960s, some interest was generated in injection upsetting [1]; it was developed with a view to extruding complex component-forms. The process configuration has since been the subject of research spanning fundamental analysis to the forming of specific components; branched components and gear-forms have been produced. The single-stage forming of such component-forms has been achieved by injection techniques; these forms were previously regarded as unformable by conventional processes. Currently, the nett-forming of some complex component-forms has been achieved by Injection Forging [2]. To date, several names have been used to describe this configuration—injection forming, injection upsetting, radial extrusion, side extrusion, transverse extrusion, lateral extrusion, and injection forging [2–22].

    COMPUTER-AIDED DESIGN,
    ENGINEERING, AND MANUFACTURING
    Systems Techniques And Applications
    VOLUME
    V I
    MANUFACTURING
    SYSTEMS PROCESSES
    Editor
    CORNELIUS LEONDES
    CRC Press
    Boca Raton London New York Washington, D.C.

    Modulus of Elasticity

    There are different techniques that have been used for over a century to increase the modulus of elasticity of plastics. Orientation or the use of fillers and/or reinforcements such as RPs can modifl the plastic. There is also the popular and extensively used approach of using geometrical design shapes that makes the best use of materials to improve stiffness even for those that have a low modulus. Structural shapes that are applicable to all materials include shells, sandwich structures, dimple sheet surfaces, and folded plate structure.
    Plastics
    Engineered
    Product
    Design
    Dominick Rosato and
    Donald Rosato
    Elsevier Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 lGB, UK
    Elsevier Inc, 360 Park Avenue South, New York, NY 10010-1710, USA
    Elsevier Japan, Tsunashima Building Annex, 3-20-12 Yushima, Bunkyo-ku, Tokyo 113,
    Japan

    Mechanical Properties of Metals (2)

    6. Brittleness.
    It is the property of a material opposite to ductility. It is the property of breaking of a material with little permanent distortion. Brittle materials when subjected to tensile loads, snap off without giving any sensible elongation. Cast iron is a brittle material.

    7. Malleability.
    It is a special case of ductility which permits materials to be rolled or hammered into thin sheets. A malleable material should be plastic but it is not essential to be so strong. The
    malleable materials commonly used in engineering practice (in order of diminishing malleability) are lead, soft steel, wrought iron, copper and aluminium.

    8. Toughness.
    It is the property of a material to resist fracture due to high impact loads like hammer blows. The toughness of the material decreases when it is heated. It is measured by the amount of energy that a unit volume of the
    material has absorbed after being stressed upto the point of fracture. This property is desirable in parts subjected to shock and impact loads.

    9. Machinability. It is the property of a material which refers to a relative case with which a material can be cut. The machinability of a material can be measured in a number of ways such as comparing the tool life for cutting different materials or thrust required to remove the material at some given rate or the energy required to remove a unit volume of the material. It may be noted that brass can be easily machined than steel.

    10. Resilience. It is the property of a material to absorb energy and to resist shock and impact loads. It is measured by the amount of energy absorbed per unit volume within elastic limit. This property is essential for
    spring materials.

    FIRST MULTICOLOUR EDITION
    A TEXTBOOK OF
    Machine
    Design
    (S.I. UNITS)
    [A Textbook for the Students of B.E. / B.Tech.,
    U.P.S.C. (Engg. Services); Section ‘B’ of A.M.I.E. (I)]
    R.S. KHURMI
    J.K. GUPTA
    EURASIA PUBLISHING HOUSE (PVT.) LTD.
    RAM NAGAR, NEW DELHI-110 055


  • Read more........
  • PRESS FITS

    When one object such as a shaft is assembled to another by forcing it into a hole that is slightly too small, the operation is known as press fitting. Press fits can be designed between similar plastics, dissimilar plastics, or more commonly between a plastic and a metal. A typical example occurs when a plastics hub in the form of a control knob or gear is pressed on a metal shaft. The position is reversed when a plastics sleeve or bearing is pressed into a metal bore.
    Press fits are simple and inexpensive but there are some problems to look out for. The degree of interference between the shaft and the hole is critical. If it is too small, the joint is insecure. If it is too great, the joint is difficult to assemble and the material will be over-stressed. Unlike a snap fit, the press fit remains permanently stressed and it is the elastic deformation of the plastics part that supplies the force to hold the joint together.
    When plastics materials are exposed to permanent stress the result is creep. This means that as time goes by, the force exerted by the press fit becomes less, lthough not necessarily to a significant extent.
    There are two other pitfalls for press fits. Manufacturing tolerances on the shaft and hole must be taken into account to see whether the two extreme cases remain viable.
    And when the joint is made between dissimilar materials, an increase in temperature will change the degree of interference between the parts. Remember too, that at elevated temperatures the effect of creep will be greater.
    One way of countering the effect of creep in a shaft and hub press fit is to provide a straight medium knurl on the metal shaft.
    The plastics hub material will tend to cold flow into the grooves of the knurl, giving a degree of mechanical interference between the parts. The frictional effect is also greater because the surface area of the joint has been increased by the knurl.

    DESIGN GUIDES
    for
    PLASTICS
    Clive Maier, Econology Ltd
    Plastics Design Group - Plastics Consultancy Network
    British Plastics Federation
    pdg
    plastics design group
    December 2004 Edition




  • Read more........
  • SIZE OF DRAWING SHEETS

    2.4.1 Preferred sizes The preferred size of drawing sheets shall be the ISO-A series for which the designation and dimensions are as given in Table 2.1. Preferred size drawing sheets, with slightly wider borders to take account of preprinting considerations, shall have dimensions as given in Table 2.2. Such sheets shall be additionally designated by the prefix R, i.e. RA0, RA1, RA2, RA3, and RA4. Where drawing sheets of a greater length are required, they should be selected from and have dimensions in accordance with one of the series given in Table 2.3. Such sheets shall bedesignated A3 × 3, A3 × 4, A4 × 3, A4 × 4, and A4 × 5. 2.4.2 Non-preferred sizes The non-preferred size of drawing sheets shall be the ISO-B series for which the designations and dimensions are as given in Table 2.4. Non-preferred size drawing sheets, with slightly wider borders to take account of preprinting considerations, shall have dimensions as given in Table 2.5. Such sheets shall be additionallydesignated by the prefix R, i.e. RB1, RB2, RB3, and RB4. 2.4.3 Roll drawings Standard widths of roll drawings shall be 860 mm and 610 mm. Lengthsof the roll drawing sheets shall be determined to suit the requirements of the individual drawings. Australian Standard Technical drawing Part 101: General principles For history before 1992, see Preface. Second edition AS 1100.101—1992. Incorporating Amdt 1-1994 PUBLISHED BY STANDARDS AUSTRALIA (STANDARDS ASSOCIATION OF AUSTRALIA) 1 THE CRESCENT, HOMEBUSH, NSW 2140

    Mechanical Properties of Metals

    The mechanical properties of the metals are those which are associated with the ability of the material to resist mechanical forces and load. These mechanical properties of the metal include strength, stiffness, elasticity, plasticity, ductility, brittleness, malleability, toughness, resilience, creep and hardness. We shall now discuss these properties as follows:
    1. Strength. It is the ability of a material to resist the externally applied forces without breaking or yielding. The internal resistance offered by a part to an externally applied force is called *stress.
    2. Stiffness. It is the ability of a material to resist deformation under stress. The modulus of elasticity is the measure of stiffness.
    3. Elasticity. It is the property of a material to regain its original shape after deformation when the external forces are removed. This property is desirable for materials used in tools and machines. It may be noted that steel is more elastic than rubber.
    4. Plasticity. It is property of a material which retains the deformation produced under load permanently. This property of the material is necessary for forgings, in stamping images on coins and in ornamental work.
    5. Ductility. It is the property of a material enabling it to be drawn into wire with the application of a tensile force. A ductile material must be both strong and plastic. The ductility is usually measured by the terms, percentage elongation and percentage reduction in area. The ductile material commonly used in engineering practice (in order of diminishing ductility) are mild steel, copper, aluminium, nickel, zinc, tin and lead.
    Note : The ductility of a material is commonly measured by means of percentage elongation and percentage
    reduction in area in a tensile test. (Refer Chapter 4, Art. 4.11).

    FIRST MULTICOLOUR EDITION
    A TEXTBOOK OF
    Machine
    Design
    (S.I. UNITS)
    [A Textbook for the Students of B.E. / B.Tech.,
    U.P.S.C. (Engg. Services); Section ‘B’ of A.M.I.E. (I)]
    R.S. KHURMI
    J.K. GUPTA


  • Read more........
  • Sections and sectional views

    A section is used to show the detail of a component, or an assembly, on a particular plane which is known as the cutting plane. A simple bracket is shown in Fig. 8.1 and it is required to draw three sectional views.
    Assume that you had a bracket and cut it with a hacksaw along the line marked B–B. If you looked in the direction of the arrows then the end view B–B in the solution (Fig. 8.2), would face the viewer and the surface
    indicated by the cross hatching would be the actual metal which the saw had cut through. Alternatively had we cut along the line C–C then the plan in the solution would be the result. A rather special case exists along the plane A–A where in fact the thin web at this point has been sliced. Now if we were to cross hatch all the surface we had cut through on this plane we would give a false impression of solidity. To provide a more realistic drawing the web is defined by a full line and the base and perpendicular parts only have been cross hatched. Note, that cross hatching is never undertaken between dotted lines, hence the full line between the web and the remainder of the detail.
    However, the boundary at this point is theoretically a dotted line since the casting is formed in one piece and no join exists here. This standard drawing convention is frequently tested on examination papers.
    Cutting planes are indicated on the drawing by a long chain line 0.35 mm thick and thickened at both ends to 0.7 mm. The cutting plane is lettered and the arrows indicate the direction of viewing. The sectional view or plan must then be stated to be A–A, or other letters appropriate to the cutting plane. The cross hatching should always be at 45° to the centre lines, with continuous lines 0.35 mm thick.
    If the original drawing is to be microfilmed successive lines should not be closer than 4 mm as hatching lines
    tend to merge with much reduced scales. When hatching very small areas the minimum distance between lines
    should not be less than 1 mm.
    In the case of very large areas, cross hatching may be limited to a zone which follows the contour of the hatched area. On some component detail drawings it may be necessary to add dimensions to a sectional
    drawing and the practice is to interrupt the cross hatching so that the letters and numbers are clearly visible.

    Manual of
    Engineering Drawing
    Second edition
    Colin H Simmons
    I.Eng, FIED, Mem ASME.
    Engineering Standards Consultant
    Member of BS. & ISO Committees dealing with
    Technical Product Documentation specifications
    Formerly Standards Engineer, Lucas CAV.
    Dennis E Maguire
    CEng. MIMechE, Mem ASME, R.Eng.Des, MIED
    Design Consultant
    Formerly Senior Lecturer, Mechanical and
    Production Engineering Department, Southall College
    of Technology
    City & Guilds International Chief Examiner in
    Engineering Drawing
    Elsevier Newnes
    Linacre House, Jordan Hill, Oxford OX2 8DP
    200 Wheeler Road, Burlington MA 01803


  • Read more........
  • The Blow Molding Process

    THEORETICAL BACKGROUND Blow molding is a fabrication process to convert the raw materials (resin) into finished hollow containers (products). It is a manufacturing process by which hollow plastic parts are formed. Principle of the Most Basic Type of Blow Molding 1. Resin is melted by heaters and plasticized by an extruder. 2. Then it is extruded so that it forms a tube-shaped parison matching the size of the product as it passes through the die. 3. Air is then forced into the parison and press it against the inner walls of the mold. After the parison cools and become solid in the mold, the air is released. 4. Finally, the mold will open and the product is deflashed and ejected or taken out the machine. Higher Institute for Plastics Fabrication WORKBOOK for Extrusion Blow Molding Practical Course Prepared by Extrusion Blow Molding Department 1st Edition 2009

    Safety factor

    A safety factor (SF) or factor of safety (FS) (also called factor of ignorance) is used with plastics or other materials (metals, aluminum, etc.) to provide for the uncertainties associated with any design, particularly when a new product is involved with no direct historical performance record. There are no hard and fast rules to follow in setting a SF. The most basic consideration is the consequences of failure. In addition to the basic uncertainties of graphic design, a designer may also have to consider additional conditions such as: (1) variations in material property data (data in a table is the average and does not represent the minimum required in a design); (2) variation in material performance; (3) effect of size in stating material strength properties; (4) type of loading (static, dynamic, etc.); (5) effect of process (stress concentrations, residual stress, etc.); and (6) overall concern of human safety.
    The SF usually used based on experience is 1.5 to 2.5, as is commonly used with metals. Improper use of a SF usually results in a needless waste of material or even product failure. Designers unfamiliar with plastic products can use the suggested preliminary safety factor guidelines in Table 7.3 that provide for extreme safety; intended for preliminary dcsign analysis only. Low range values represent applications where failure is not critical. The higher values apply where failure is critical. Any product designed with these guidelines in mind should conduct tests on the products themselves to relate the guidelines to actual performance. With more experience, more-appropriate values will be developed targeting to use 1.5 to 2.5. After field service of the preliminary designed products has been obtained, action should be taken to consider reducing your SF in order to reduce costs.
    Plastics
    Engineered
    Product
    Design
    Dominick Rosato and
    Donald Rosato
    ELSEVIER


  • Read more........
  • Mold Setup & Parison Processing

    Performance Objective Setup to generate good container welds with even, easy flash removal at target flash to container interface temperature. Mold Setup •Setup molds with carbon paper to identify even mold compression •Setup mold temperature control of 80F to 110F (25C-40C) at pinch areas to achieve container deflash interface temperature of 180F to 200F (80C to 95C) Processing Techniques •Use mold cracking timer to enable larger containers to vent upon mold opening •Use blow pin lift timer to allow container to release from mold •Insure that container releases easily from the mold –Observe for scrapes on container –Observe for flash retensionto container or mold during mold open and container extraction •Avoid heavy pinch terminations –Program parisonto light weight pinch area –Capture parisonin inflated region –Locate pinch terminations up on base to sidewall radiaway from base footprint –Option: Locate pinch terminations within the base pushup –Option: Locate one end of pinch termination within the base pushup and the other end on the container sidewall Processing Techniques •Pinch weld termination location 1.Locate pinch terminations up on base to sidewall radii away from base footprint 2.Locate pinch terminations within the base pushup 3.Locate one end of pinch termination within the base pushup and the other end on the container sidewall EASTMAN Extrusion Blow Molding Presentation.

    SCALE RATIOS

    Engineering and architectural drawing scales The recommended scales for use in engineering drawing practice and in architectural and building drawings are specified in Table 5.1.




    NOTE: If, for special applications, there is need for a larger enlargement scale or a smaller reduction scale than those shown in the table, the recommended range of scales may be extended in either direction, provided that the required scale is derived from a recommended scale by multiplying by integral powers of 10. In exceptional cases where for functional reasons the recommended scales cannot be applied, intermediate scales may be chosen.

    Australian Standard
    Technical drawing
    Part 101: General principles
    For history before 1992, see Preface.
    Second edition AS 1100.101—1992.
    PUBLISHED BY STANDARDS AUSTRALIA
    (STANDARDS ASSOCIATION OF AUSTRALIA)
    1 THE CRESCENT, HOMEBUSH, NSW 2140
    ISBN 0 7262 7806 8
    Accessed by WOODSIDE ENERGY LTD on 21 Nov 2001



  • Read more........
  • Concurrent Engineering Design

    The production process executes the final results of the design process to produce a product or system. In the pas\. the creative design process was separated from the production process. With the advent of computer modeling. this separation is no longer necessary. and the modern engineering design approach brings both proc'CSses together.
    Concurrent engineering is a nonlinear team approach to design that brings together the input. processes. and output elements necessary to produce a product. The people and processes are brought together at the very beginning. which is not normally done in the linear approach. nte team consists of design and production engineers. technicians. marketing and finance personnel. planners. and managers. who work together [0 solve a problem and produce a product.
    Many companies are finding that concurrent engineering pmcticcs result in a belter. higher-quality product. morc satisfied customers. fewer manufacturing problems. and a shorter cycle time between design initiation ,md final production.
    Figures 2.7 and 2.8 represent the concurrent approach to engineering design. based on 3-D modeling. The three intersecting circles represent the concurrent nature of this design approach. For example. in the ideation phase. design engineers interact with service technicians to ensure that the product willlJe easily serviceable by theconsumer or technician. This type of interaction results in a better prodllct for the consumer. The three intersecting circles also represent the three activities that are a major part of the conCllrrent engineering design process: ideation. refinement. and implementation. These three activities are further divided into smaller segments, as shown by the items surrounding the three circles.
    Design for manufacturabiJity (DFM) and design for assembly (OFA) practices developed out of concurrent
    engineering as an elTon to capture manufacturing and assembly knowledge up front in the imitial design
    process. This allowed engineering and manufacturing professionals 10 speak a common language that results in an optimilcd product design. OFM and OFA cvcntually cxpanded to include other practices. such as design for serviceability and design for reliability. This led to the realization that it is important to include others in the design process. such as marketing, sales. field service, finance, purchasing. and quality control.
    The center area in Figure 2.8 represenL~ the 3-D computer model and rellects the central importance of 3-D
    modeling and graphics knowledge in engineering design and production. With the use of a modeling approach. everyone on the team can have access to the current design through a computer terminal. This data sharing is critically important to the success of the design process.

    The Engineering Design Process
    Bertoline--Wiebe--Miller:
    Fundamentals of Graphics
    Communication,3/e
    The McGraw-Hill
    Companies,2001


  • Read more........
  • Design Ability

    What Designers Say The wish to design things is inherent in human beings, and design is not something that has always been regarded as needing special abilities. It is only with the emergence and growth of industrial societies that the ability to design has become regarded as a specialised talent. Although there is so much design activity going on in the world, the ways in which people design are actually rather poorly understood. It has been thought that perhaps many people possess design ability to some degree, but that only a few people have a particular design 'talent'. However, there is now a growing body of knowledge about the nature of designing, about design ability and how to develop it, and about the design process and how to improve it. When designers are asked to discuss their abilities, and to explain how they work, a few common themes emerge. One theme is the importance of creativity and intuition in design, even in engineering design. For example, the architect and engineering designer Jack Howe has said: I believe in intuition. I think that's the difference between a designer and an engineer... I make a distinction between engineers and engineering designers... An engineering designer is just as creative as any other sort of designer. Some rather similar comments have been made by the industrial designer Richard Stevens: A lot of engineering design is intuitive, based on subjective thinking. But an engineer is unhappy doing this. An engineer wants to test; test and measure. He's been brought up this way and he's unhappy if he can't prove something. Whereas an industrial designer.., is entirely happy making judgements which are intuitive. Engineering Design Methods Strategies for Product Design THIRD EDITION Nigel Cross The Open University, Mi/ton Keynes, UK JOHN WILEY & SONS, LTD Chichester- New York. Weinheim • Brisbane. Singapore. Toronto

    Computer-Aided Design and Manufacture of Injection Forging

    The design activity is responsible not only for the performance and appearance of the product but also for the cost of the component. Design, therefore, cannot be an isolated activity but must address all available manufacturing routes, with a view to optimizing the quality and cost of the component. With reference to nett-forming, the design exercise is conducted not only to specify the component-form but also to address all manufacturing constraints—machine, material, tooling, and processing conditions. Computer-aided “design for manufacture” is currently the main form of implementing of the “concurrent engineering.” To enable this, CAD/CAM is popularly used as a design approach. Using CAD/CAM approaches, simultaneous design would be effected efficiently by supporting the designer with information on all possible resources required for the design and manufacture of components. Some CAD/CAM systems [42] have demonstrated the potential for the development into decision-support systems for component/tool design. Computer-aided design and manufacture for nett-forming by injection forging is being developed as an aspect of research associated with the development of a decision-support system [64]. Methodology In order to develop a decision-support system for component/tool design using a CAD/CAM approach, several design/evaluation methods have been developed [58, 60, 64–68]. These are described briefly in the following texts. Geometric Modeling The popular strategy used for the development of the design-support systems for forging was to evolve a 2D-CAD system for component and tool design. The system was linked to a knowledge-based system to enable the evaluation of manufacturability. Subsequent to the evaluation of the geometry, the component was transferred to a CAD software to enable detailed design. This approach required the design to operate in several software environments. An integrated system, supported by solid modeling, would enable design and assessment of a component more efficiently. A solid modeling-approach—principal feature modeling—was used to enable component-design for forging within a solid modeling environment [65, 66]; the approach enables integration of currently available 2D-based knowledge-based systems. Design for manufacture requires that the component form is specified in a modular form in order to enable the evaluation of the design. The component may be defined as a combination of primitive forms as is the case in “design by features;” alternatively, the primitive forms which constitute the component may be extracted and identified automatically. Unfortunately, both these approaches are currently at a stage of refinement which only allows their applications to a limited range of component forms. Principal feature modeling [67] combines the strategies of both “design by feature” and “feature recognition” to enable efficient modeling and feature manipulation; the approach was proven to be particularly efficient for the modeling of forging/machining components [65]. Designing is attended to with reference to a prescribed set of performance requirements rather than to prescribed form features. The principal features, which represent the principal geometric profiles of a component, may be defined by the designer using arbitrary geometry—a group of curves on a plane or a curved surface. The principal features which have been generated are linked, exclusively, to a set of prescribed attributes which are catalogued in a database. COMPUTER-AIDED DESIGN, ENGINEERING, AND MANUFACTURING Systems Techniques And Applications VOLUME V I Editor CORNELIUS LEONDES Boca Raton London New York Washington, D.C. CRC Press MANUFACTURING SYSTEMS PROCESSE.

    Roughness and waviness

    A trace across a surface provides a profile of that surface which will  contain short and long wavelengths (see Figure 4.11). In order for a surface to be correctly inspected, the short and long wavelength  components need to be separated so they can be individually analysed. The long waves are to do with dimensions and the short waves are to do with the SE Both can be relevant to function but in different ways. Consider the block in Figure 6.1. This has been produced on a shaping machine. The block surface undulates in a variety of ways. There is a basic roughness, created by the tool feed marks, which is superimposed on the general plane of the surface.
    Thus, one can identify two different wavelengths, one of a small scale and one of a large scale. These are referred to as the roughness and waviness components.
    Roughness and waviness have different influences on functional performance. A good example illustrating the differences concerns automotive bodies. Considering the small-scale amplitudes and wavelengths called 'roughness', it is the roughness, not waviness, which influences friction, lubrication, wear and galling, etc. The
    next scale up from roughness is 'waviness' and it is known that the visual appearance of painted car bodies correlates more with waviness than roughness. The reason for this is the paint depth is about 100um and it has a significant filtering effect on roughness but not waviness.


    Engineering Drawing for Manufacture
    by Brian Griffiths
    Publisher: Elsevier Science & Technology Books


  • Read more........
  • DESIGNATION AND RELATIVE POSITIONS OF VIEWS

    An object positioned in space may be imagined as surrounded by six mutually perpendicular planes. So, for any object, six different views may be obtained by viewing at it along the six directions, normal to these planes. Figure 3.5 shows an object with six possible directions to obtain the different views which are designated as follows: 1. View in the direction a = view from the front 2. View in the direction b = view from above 3. View in the direction c = view from the left 4. View in the direction d = view from the right 5. View in the direction e = view from below 6. View in the direction f = view from the rear Figure 3.6a shows the relative positions of the above six views in the first angle projection and Fig.3.6b, the distinguishing symbol of this method of projection. Figure 3.7 a shows the relative position of the views in the third angle projection and Fig. 3.7b, the distinguishing symbol of this method of projection. NOTE A comparison of Figs. 3.6 and 3.7 reveals that in both the methods of projection, the views are identical in shape and detail. Only their location with respect to the view from the front is different. MACHINE DRAWING Third Edition Dr.K.I. Narayana Dr.P. Kannalah K. Venkata Reddy NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS

    Extrusion Blow Molding Machine Parts and Functions

    Extrusion Blow Molding Machine Parts and Functions
    • Extruder Motor—Drives the screw in the barrel to rotate and push the
    melted material into the die head.
    • Gearbox—Reduces the speed of the extruder motor into a required speed enough to push the material into the die head.
    • Hopper—A feed reservoir into which the material is loaded.
    • Extruder—A part of the machine that accepts solid resin material, conveys it in a surrounding barrel by means of a rotating screw, melts the
    material by means of heaters, and pumps it under pressure into the die
    head.
    • Cooling Fans—Cools down the barrel during machine shut down to prevent the material from degradation.
    • Heating Bands—Device attached on the barrel and the die head used to melt the solid material at a required set temperature.
    • Die Head—Used to form the melted resin into a parison and also used for adjusting the characteristics of molten resin to create a stable parison.
    • Die & Pin—Used to align the flow of parison to get a good and centered parison.
    • Hot Cutter—Cuts the parison after the mold is closed for the blowing process.
    • Blow Pin—Used to blow compressed air into the parison to inflate it after the mold has been closed and form the desired design of the mold.
    • Mold—A hollow form or a cavity into which a molten plastic material, called parison, is introduced to give the shape of the required component.
    • Deflasher—Used to cut the excess material on the bottle which is called a flash material (top and bottom).
    • Post Cooling—A part of the machine that is used to cool down the inside of the bottle, to lessen the cooling time required inside the mold.
    • Article Discharge—A part of the machine used to take the bottle out.

    Higher Institute for Plastics Fabrication
    WORKBOOK
    for
    Extrusion Blow Molding
    Practical Course
    Prepared by
    Extrusion Blow Molding Department
    1st Edition 2009


  • Read more........
  • Labels

    2d (1) 3D (1) ABG (1) agen JNE (1) almari (1) Alufoil (1) Aluminum Foil (1) anilox roll (1) apartemen (1) Atom (1) autocad (1) backdrop logo (1) bagian dalam (1) bangunan (1) batu alam (1) berkualitas (1) bermutu (1) berpengalaman (1) bertingkat (1) birdview (1) black and white (1) botol plastik (1) cafe (1) classic (1) coklat (1) cold rolled sheet (1) Computer To Plate (1) concepts (1) Consumer Understanding (1) control movement (1) counter (1) create (1) CTP (1) denah berwarna (1) denah kantor (1) desain (1) desain cuci mobil (1) desain kamar (1) desain produk (1) design (2) Design and Function (1) design meja (1) Design restaurant (1) design rumah (1) development (1) di daerah (1) dinding bata (1) dining (1) Duromer (1) Electrons (1) etnik (1) factors (1) flexo packaging (1) flexo printing (1) food (1) furniture (1) gallus (1) gambar (1) gaya modern (1) gloss (1) grc kotak (1) Halftone (1) hanya 550 ribu (1) harga murah (1) hasil cepat (1) hotel (1) industrial (1) injection (1) Injection Mold (1) ink (1) inovatif (1) install (1) interior (1) interior rumah (1) jasa gambar rumah (1) jasa 3d (1) jasa arsitek (1) jasa desain (1) jasa desain 3d (1) jasa design (1) jasa designer (1) jasa gambar (1) kamar tidur (1) kamar tidur anak (1) kampus (1) karaoke (1) kawasan (1) kawasan industri (1) kemasan (1) kerja di rumah (1) kitchen set (1) kontemporer (1) kosan (1) kost (1) krem (1) laci (1) lamination (1) lithography (1) living room (1) livingroom (1) lounge (1) Luscher MultiDX (1) masterplan (1) matt (1) meja kerja (1) metalworking (1) mewah (1) minimalis (1) minimalist (1) modern (1) mold (1) molding (1) Monomer (1) murah (1) murah. (1) Neutron (1) nuansa remaja (1) offset (1) online design (1) open ceiling (1) outdoor (1) overprint (1) pabrik (1) pantai (1) pencahayaan (1) perumahan (1) pesan desain (1) pesan desain toko (1) plastic (1) plug (1) Polimer (1) Polyaddition (1) Polycondensation (1) Polymerization (1) Polystyrene (1) printing ink (1) product (1) Product Creation (1) product design (1) product function (1) produk katalog (1) Protons (1) prototype (1) Raster Image Processor (1) register (1) rendering (1) research (1) resepsionis (1) responsibility (1) resto industrial (1) RIP (1) Rotary (1) ruang kantor (1) ruang keluarga (1) ruang kerja (1) ruang tamu (1) ruang tunggu (1) ruko (1) rumah (1) rumah hook (1) rumah susun (1) rumah tropis (1) scandinavian (1) screen printing (1) sederhana (1) sempoa (1) setup (1) simple sederhana (1) specifications (1) spring (1) steel (1) Struktur Plastik (1) suspension (1) sweet home (1) taman (1) tampak (1) tampak rumah (1) Technological Change (1) terbaru (1) termurah (1) toko aksesoris (1) toko asesoris (1) trapping (1) two cavity (1) unscrewing (1) use (1) uv varnish (1) via online (1) website (1)